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The songbird system has shed light on how the brain produces

precisely timed behavioral sequences, and how the brain

implements reinforcement learning (RL). RL is a powerful

strategy for learning what action to produce in each state, but

requires a unique representation of the states involved in the

task. Songbird RL circuitry is thought to operate using a

representation of each moment within song syllables,

consistent with the sparse sequential bursting of neurons in

premotor cortical nucleus HVC. However, such sparse

sequences are not present in very young birds, which sing

highly variable syllables of random lengths. Here, we review

and expand upon a model for how the songbird brain could

construct latent sequences to support RL, in light of new data

elucidating connections between HVC and auditory cortical

areas. We hypothesize that learning occurs via four distinct

plasticity processes: 1) formation of ‘tutor memory’ sequences

in auditory areas; 2) formation of appropriately-timed latent

HVC sequences, seeded by inputs from auditory areas

spontaneously replaying the tutor song; 3) strengthening,

during spontaneous replay, of connections from HVC to

auditory neurons of corresponding timing in the ‘tutor memory’

sequence, aligning auditory and motor representations for

subsequent song evaluation; and 4) strengthening of

connections from premotor neurons to motor output neurons

that produce the desired sounds, via well-described song RL

circuitry.
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Learning complex sequential behaviors
Some of the brain’s most fascinating and expressive

functions, like music, athletic performance, speech,

and thought itself, are learned sequential behaviors that

require thousands of repetitions of trial and error
www.sciencedirect.com 
learning and observation of others. However, a funda-

mental challenge is learning how to structure these

behaviors into appropriate chunks that can be acquired

by trial and error learning. ‘Chunking’ has been

highlighted as a central mechanism for learning action

sequences in a variety of systems [1–4]. For example,

the brain of a young musician does not know a priori the

number or durations of melodies it will need to generate.

The brain of a young athlete does not know how many

maneuvers it will need to practice and eventually per-

fect. How does the brain flexibly construct motor pro-

grams that have the correct temporal state representa-

tions that then support trial-and-error learning to

achieve complex behavioral goals?

Avian song learning, which shares crucial behavioral,

circuit-level and genetic mechanisms with human speech

[5–7,8�,9] (Figure 1a), has provided a rich system for

understanding how complex sequential behaviors are

produced by the brain, including how they are learned

through observation and practice. All songbirds, such as

the widely studied zebra finch, learn to imitate the song of

a conspecific tutor, typically the father. Juvenile zebra

finches start off babbling subsong, then introduce a ste-

reotyped ‘protosyllable’ of �100 ms duration. New syl-

lables emerge through the differentiation of this proto-

syllable into multiple syllable types, until the song

crystallizes into an adult song composed of 3–7 distinct

syllables [10��]. After several weeks of practice, zebra

finches can produce a precise moment-to-moment imita-

tion of their tutor’s song.

Song acquisition through reinforcement
learning (RL)
The RL framework underlies a predominant view of

song learning [11,12,13��,14]. In recent incarnations of

this view, premotor and motor nuclei HVC (proper

name) and RA (robust nucleus of the arcopallium)

generate a song ‘policy’ — what vocal outputs to pro-

duce when. A variability-generating circuit LMAN (lat-

eral magnocellular nucleus of the anterior nidopallium)

serves as an ‘actor’ that injects variability into RA to

produce variable song outputs [15��,16–20]. A pathway

from auditory circuits through dopaminergic VTA (ven-

tral tegmental area) to a basal ganglia circuit may serve

as an ‘evaluator’ that detects which vocal variations

successfully matched a memory of the tutor song

[21,22,23��]. Finally, the vocal basal ganglia circuit,

which is necessary to learn changes in song acoustics

[24], improves song policy by biasing the variability-

generating circuit to produce successful variations

more often [25��,26]. This bias drives plasticity in the
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Reinforcement learning of sequential behavior, implemented by the songbird brain. (a) Schematic showing several homologous structures in

the songbird (left) and human (right) brains. Unlike the layered mammalian cortex, the songbird ‘cortex’ is organized in pallial fields [95�], which

share molecular markers with mammalian cortical layers [96]. Careful analyses of cell types, projection patterns, and gene expression has led to

the view that the songbird brain has homologs to all major parts of the mammalian brain, including cortex, thalamus, basal ganglia, and

dopaminergic VTA [8�,97,98–101]. Within these distinct brain regions lie cell groups (or nuclei) whose primary function is song. (b) The song nuclei

connect to each other, forming several pathways that underlie song production and learning: a descending ‘cortical’ motor pathway consisting of

premotor and motor output nuclei (HVC and RA respectively) [76,102–104]; a learning pathway consisting of a basal-ganglia-thalamo-cortical loop

(Area X, DLM and LMAN respectively)[105–108]; and an auditory pathway that stores a memory of the tutor song [50,51], interacts directly with

song areas [60,61], and also interacts indirectly through midbrain reward centers (VTA)[22,23��,109]. These pathways are thought to implement

distinct functions of reinforcement learning [11,12,13��,14]:
Timing/Motor Pathway Each individual projection neuron in adult HVC bursts at a particular moment in the song, always occurring at the same

moment in the song to submillisecond precision [29,30]. Different neurons burst at different times in the song, so that collectively, the population

of projection neurons provides a sequence of timestamps that cover the entire song [31��,32�]. In this model, HVC drives different ensembles of

downstream neurons in RA and the vocal motor nucleus at different moments in the song.

Reinforcement Learning Pathway Song variability is largely driven by nucleus LMAN, a premotor cortical region that projects to the motor

output nucleus RA [15��,16–18]. During learning, song variations generated by LMAN become biased toward successful song variations [25��,26].
This bias represents the gradient of song performance in motor space, which could be used to shape motor circuitry through learning of HVC!RA

synapses [13��,27]. It has been hypothesized that this gradient is computed using three signals that converge in the song-related basal ganglia,

Area X [13��]. Specifically, local ensembles of medium spiny neurons in Area X receive: an efference copy of LMAN activity that generates song

variations, a timing signal from HVC, and an evaluation signal from VTA. These signals allow Area X to determine which song variations, at which

times, have led to improved performance, and thus to bias LMAN to produce the same variations at the same time in future song renditions,

through a topographically organized BG-thalamo-cortical feedback loop to LMAN [107,110�].
Evaluation pathway through VTA. Song is evaluated by listening and comparing to a template memory of the tutor song. The evaluation

pathway starts in higher-order auditory cortical areas, which contain neurons selective for song errors [21,22]. The output of this evaluation

pathway is VTA. Neurons in VTA projecting to Area X convey a song performance prediction error signal used to guide learning [23��,109].

Current Opinion in Neurobiology 2018, 49:59–68 www.sciencedirect.com
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Box 1 Mechanisms underlying HVC sequences.

HVC plays a key role in song timing [76]. Lesions to HVC eliminate all

consistently timed vocal gestures, and leave birds babbling sub-

song [77]. Further evidence that HVC controls stereotyped song

timing is that localized cooling of HVC slows song syllables by

roughly 3% per degree C of cooling [45,78]. In contrast, cooling the

downstream area (RA) does not slow the song beyond what would

be expected from the small residual temperature change in HVC

(which is several millimeters away) suggesting that the dynamics

governing song timing are in HVC, and not RA [78] nor in a loop

involving RA (but see [79]).

A prevalent model of how HVC produces precisely timed sequences

is the synaptic chain model [30,47,48��,80,81], which hypothesizes

that sequential activity in HVC neurons is due to direct synaptic

connections between neurons that burst at successive moments in

the song. Preliminary analysis of a small number of burst times

seemed to suggest that HVC bursts only occur at certain special

moments in the song [82], which would be inconsistent with a

synaptic chain model. More recently, analysis of large datasets of

HVC neurons has revealed that the network generates a sequence of

bursts that spans the entire song with nearly uniform density

[31��,32�]. Temporal patterning in HVC does not appear to be

strongly spatially organized; neurons that burst at similar times

appear to be scattered throughout HVC [83]. However, projections to

HVC exhibit non-uniform topology, and lesion experiments suggest

that medial HVC may play a disproportionate role in controlling

transitions between syllables [84,85,86�].

Inhibitory interneurons within HVC may play a role in governing the

timing of HVC projection neurons [87]. In the simplest case, inhibitory

feedback may stabilize the propagation of activity through feedfor-

ward excitatory chains [30,47,48��,81]. In addition, interneurons may

play a more precise role in patterning projection neuron burst times

[88,89]. More recently, the interaction between excitatory and inhi-

bitory neurons in HVC has been investigated using connectomic

approaches [90�], revealing patterns of connectivity between pro-

jectionneurons and interneurons consistent with synaptically con-

nected chains of excitatory neurons embedded in a local inhibitory

network.

HVC receives inputs from other brain areas that may influence song

timing and structure. For example, inputs from cortical area Nucleus

Interface (NIf) appear to affect syllable ordering and higher-order

song structure [91]. Inputs to HVC from NIf and the thalamic nucleus

Uvaformis (Uva) exhibit a peak immediately prior to syllable onsets

and a pronounced minimum during gaps between syllables [92�,93],
consistent with a special role of these areas in syllable initiation and

timing. However, cooling studies reveal that HVC also plays a role in

syllable syntax [94], and inputs to HVC from Uva may also play some

role in within-syllable song timing [79].
song motor pathway to consolidate an improved song

policy [25��,26,27]. See Figure 1b, and [13��] for more

extensive discussion of an RL model.

Note that song is a sequential behavior in which errors

early in the sequence do not propagate to the rest of the

sequence. In contrast with behaviors like navigating a

maze or playing a game, where actions early in the

sequence can have a profound effect on potential out-

comes later in the sequence, one flubbed note need not

spoil the whole song. This type of RL, described by

Sutton and Barto as ‘contextual bandit’ RL, is simpler

than what they term ‘full’ RL, because actions only affect

reward, but not future states [28]. Thus, learning can

occur independently at each state in time, using a time-

dependent reward signal to associate each state with the

appropriate action. This form of RL requires as input a

representation of the context on which associated actions

or emissions are learned.

Consistent with this view, songbird RL models take as

input a sequence of contexts represented by a unique

timestamp for each moment in the song [12,13��,14].
This representation is encoded in nucleus HVC of the

song motor system. In adult birds, each individual pre-

motor HVC neuron bursts at a single moment in the

song. The bursts of each neuron are only 6 ms in dura-

tion occurring at the same moment in the song with

submillisecond precision. Because different neurons

burst at different times [29,30], the population of neu-

rons collectively provides a continuous sequence of

bursts that spans the entire song [31��,32�]. Each burst

in the sequence activates a different ensemble of down-

stream neurons to generate the appropriate vocal output

at that moment. Due to the sparseness of HVC coding,

each syllable of the song is generated by a unique

sequence of HVC bursts, which behavioral measure-

ments of variability suggest are initiated at the offset of

the previous syllable [33�]. See Box 1 for discussion of

the neural mechanisms underlying sparse sequential

bursting in HVC. Finally, HVC transmits sparse

sequences both to the song motor pathway and to the

song-related basal ganglia, which uses this sequential

state space representation of song timing to perform RL

[13��,14].

Here we come to the crux of our problem: Like our young

musician, prior to hearing their tutor, juvenile songbirds

do not know how many syllables their songs will contain,

making it unlikely that HVC could form, prior to tutoring,

sequences for each syllable in the song to be acquired.

Importantly, recent work suggests that such sequences

may not already exist in the earliest stages of song

development. This work also suggests that the sequential

representation of time underlying RL emerges gradually

during song acquisition, perhaps through an unsupervised

Hebbian learning process [34��].
www.sciencedirect.com 
Generating appropriate latent representations on which

learning may efficiently operate is an area of active

research in the machine learning and learning theory

communities. In particular, RL algorithms are known to

suffer the ‘curse of dimensionality’, and work poorly with

inefficient high-dimensional representations of the state

space [35]. However, RL algorithms have achieved

impressive human-level performance on a variety of tasks

when based on efficient state representations obtained

from a separate learning process involving deep learning

and artificial neural networks [36,37]. More generally,

several recent advances in machine learning involve using

interacting networks that each learn via separate processes
Current Opinion in Neurobiology 2018, 49:59–68
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Figure 2
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Model of the growth and splitting of neural sequences in HVC.

Schematic of a recurrent network model of HVC development. See

[34��] for more detail, including supplemental code. Neurons are drawn

as circles, sorted by when they fire relative to syllable onset. The

network is shown at four stages of development — ‘subsong’: before

any learning, when weights and input timing are random;

‘protosyllable’: Learning a single protosyllable chain using STDP and

synaptic competition under the influence of rhythmic seed inputs;

‘chain splitting (early)’: splitting the protosyllable chain using STDP and

increased synaptic competition. Seed neurons are divided into two

groups and activated alternately; ‘chain splitting (late)’: at the end of

learning. This model results in patterns of activity in HVC similar those

observed during development [34��].
[38,39]. Furthermore, the use of deep networks, histori-

cally difficult to train, experienced a major breakthrough

[40] with the application of pre-training using unsuper-

vised processes to achieve generalizable representations

[41]. How latent structure learning could be implemented

is a key research direction at the interface of biological and

machine learning theory [42�,43�]. Thus, to the extent that

the brain employs RL, it also must model latent structure

in the world to build representations that support RL [44].

Learning sequences for song timing
The songbird is an excellent model system to examine

how the brain builds a latent state space representa-

tion — namely, sequences in HVC. Recent findings sug-

gest that these sequences emerge gradually throughout

vocal development. At the earliest stage, only half of HVC

projection neurons are reliably locked to song, with bursts

clustered near the onsets of subsong syllables [34��], and

lesions of HVC do not affect the babbling subsong [45].

Maturation past subsong requires HVC, and is defined by

the emergence of a consistently timed vocal gesture,

called a protosyllable [10��,46]. During the emergence

of the protosyllable, HVC appears to grow a protose-

quence in which bursts span the entire syllable duration

[34��].

How does a single protosequence transform into a differ-

ent distinct sequence for each syllable in the adult song?

At the level of the behavior, it has been observed that

protosyllables can gradually differentiate into two syllable

types [10��]. Neural recordings in HVC during this pro-

cess suggest that early protosequences gradually split to

form multiple distinct syllable sequences. Sequence split-

ting is evidenced by the observation that, while some

neurons burst selectively for one or the other emerging

syllables, many neurons are active during both. Further-

more, the number of shared neurons decreases signifi-

cantly at later stages of development. This splitting

process repeats as birds differentiate enough new syllable

sequences to compose their adult songs, at which point

most neurons are syllable-specific, with very few shared

neurons [34��].

Model of the growth and splitting of motor
sequences during song development
The activity of HVC at different stages of vocal develop-

ment is consistent with a model (Figure 2) in which an

initially random network assembles into synaptic chains

via simple learning mechanisms [34��]: spike-timing-

dependent plasticity (STDP), recurrent inhibition, and

synaptic competition — mechanisms previously hypoth-

esized to play a role in HVC sequence formation [47,48��].
In our model, these synaptic mechanisms transform an

initially random network into a feedforward protosyllable

chain, under the influence of rhythmic external inputs to a

small population of ‘seed’ neurons.
Current Opinion in Neurobiology 2018, 49:59–68 
Splitting of the protosyllable chain into multiple daughter

chains occurs when the seed neuron inputs are split into

multiple groups and activated separately. Synaptic prun-

ing is encouraged by synaptic competition and increased

inhibition. Since daughter chains split from a common

protosyllable chain, this enables reuse of learning for

gestures that are common to all syllables. For example,

a critical feature that emerges during the formation of a

protosyllable is the coordination of respiration with voca-

lizations [46]. Such coordination would then be automati-

cally inherited by any daughter syllables that arise from

splitting of the protosyllable chain.

A crucial aspect of this model of sequence formation and

splitting is the rhythmic patterning of external inputs to
www.sciencedirect.com



Building a state space for song learning Mackevicius and Fee 63
‘seed’ neurons. The ‘seed’ neuron inputs effectively tutor

the model network to learn sequences of the proper

number and duration. However, the origin of these exter-

nal inputs is unspecified in our original model. New data

elucidating connections between HVC and auditory cor-

tex [49��] allows us to expand our hypothesis to include a

potential role for auditory cortex in seeding HVC

sequences.

Does the auditory system shape motor
sequences to reflect a tutor memory?
At a computational level, song imitation can be viewed as

learning a generative model of the tutor song. Exposure to

a tutor song could imprint the desired number of appro-

priately sized syllable chunks in the auditory system

[50,51], which through interaction with HVC could then

create an appropriate latent representation of song timing

in the form of HVC sequences. More specifically, we

propose that auditory cortex may directly influence

sequence formation in HVC by appropriately activating

seed neurons during development. Consistent with this

view, tutor exposure produces rapid overnight changes in

the song motor system, including dramatic alterations of

song features [10��], spontaneous activity [52], and spine

growth and stabilization [53]. Furthermore, auditory

inputs to HVC are gated off during singing itself, consis-

tent with a role for these inputs other than online auditory

feedback [54,55].

Four processes for song learning: a
hypothesis
Several models have been proposed for how plasticity in

the songbird brain gives rise to aspects of song learning

[11,12,13��,14,34��,47,48��,56�,57,58]. We present a new

hypothesis that incorporates ideas from these models, but

resolves several gaps, particularly in light of new data

showing direct links between the nucleus HVC and

higher auditory cortical areas [49��]. We propose that

song learning may be implemented by four processes:

1) formation of synaptically connected chains in auditory

cortex encoding a memory of the tutor song; 2) replay of

‘tutor memory’ sequences to seed the formation of chains

in HVC of the appropriate number and duration; 3)

formation, through synchronized replay of HVC and

‘tutor memory’ sequences, of connections from HVC

neurons to auditory neurons, supporting subsequent song

evaluation; and 4) refinement of connections, via RL,

from HVC to downstream motor output neurons that

produce the desired sounds (Figure 3).

Process 1: A ‘tutor memory’ is formed in auditory cortex

by simple Hebbian learning rules, as outlined by Hahn-

loser and Ganguli [58]. Specifically, connections between

neurons selective for consecutive features of the tutor

song would strengthen after repeated exposure to the

song. In higher order cortical area CM, neurons exhibit

sparse and background-invariant coding of song features
www.sciencedirect.com 
[59], a representation ideal for forming sequence gener-

ating connections, for example, a synaptic chain. Suffi-

cient strengthening of such connections would enable

‘tutor memory’ sequences to replay autonomously. Next,

we envision that such replay would drive HVC, at a

rhythm set by the tutor song, via projections from auditory

cortical areas [60,61]. Activation of HVC at the tutor song

rhythm would be facilitated by stronger activity at sylla-

ble onsets, consistent with the observed firing preference

of many auditory neurons [62]. Each syllable in the tutor

song would be represented by a different sequence in

auditory cortex, each of which could facilitate the forma-

tion of a distinct chain in HVC in process 2.

Process 2: Activation of auditory sequences drives the

formation of syllable chains in HVC, out of an initially

random network, via Hebbian STDP ([34��], and

Figure 2). Such activation could also facilitate the split-

ting of existing HVC sequences, and could happen

either during tutor exposure or during reactivation of

auditory sequences in singing or even sleep. In support

of the latter idea, sleep replay in the song motor system

is believed to be important for song learning [63–65], is

driven by the auditory system [66,67], and increases

dramatically following exposure to tutor song [52]. A

notable consequence of our model is that, after the

auditory sequences form temporally aligned HVC

chains, auditory exposure to a tutor-like song would

sequentially drive HVC neurons. After vocal learning

is complete, exposure to the birds’ own song would lead

to sequential activation of HVC neurons at times corre-

sponding to their activity during singing, similar to the

observed ‘mirror neuron’ responses in HVC [54,68].

Such responses would arise in our model without requir-

ing any learning of auditory-to-motor connections —

random connectivity is sufficient. This stands in contrast

with models that generate mirror neuron activity by

learning auditory-motor connections to create an

‘inverse model’ [56�,57,58].

Process 3: Learning of the projection from HVC to

auditory cortex connects HVC neurons active at a partic-

ular time to auditory neurons selective for the desired

sound at that time. It has recently been shown that there

exists a specific population of neurons in HVC that

projects to auditory cortex, is important for vocal learning,

and is sequentially active during singing [49��]. It has

been proposed that HVC inputs to the auditory system

could play a role in temporally aligning the readout of the

tutor memory with auditory feedback during song perfor-

mance [49��]. Process 3 provides a simple biologically

plausible mechanism for creating such alignment

(Figure 3c). More specifically, coordinated activation of

HVC sequences and auditory sequences (process 2)

would allow simple Hebbian plasticity to link HVC

neurons to auditory neurons selective for the desired

acoustic features.
Current Opinion in Neurobiology 2018, 49:59–68
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Figure 3
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Hypothesis for the role of auditory-motor interactions in song learning. (a) Diagram showing interactions between auditory cortex and HVC

that could facilitate the emergence and splitting of sequences in HVC, as well as song evaluation. In this model, the auditory memory for each

tutor syllable initiates the formation of a different sequence in HVC, thus allowing the number and duration of sequences in HVC to match the

tutor song. At this early stage of song learning, the RL pathway (through LMAN) drives subsong babbling; dashed lines emphasize that the role of

RL circuitry is unclear at these earliest stages. In later stages, the diagrammed interactions between HVC and auditory cortex would facilitate

readout of the auditory memory for song evaluation during singing. (b) Illustration of four hypothesized plasticity processes involved in learning

one tutor syllable. Connections strengthened in each process are colored red. Process 1: exposure to a tutor song forms ‘tutor memory’

sequences in auditory cortex (by Hebbian mechanisms described in [58]). Process 2: replay of ‘tutor memory’ sequences seeds the formation of

HVC sequences (by Hebbian mechanisms described in [34��]). Process 3: concurrent replay of ‘tutor memory’ and HVC sequences allows

Hebbian strengthening of connections from HVC to auditory neurons active at the same time in the sequence. This automatically aligns

sequentially active HVC neurons [49��] to auditory neurons selective for the desired sound at each time. Coordinated inputs to auditory cortex

from HVC and auditory afferents generate a match-to-target song evaluation signal. Process 4: This evaluation signal is used by RL circuitry to

strengthen HVC to RA connections that produce sounds that match the tutor song. (c) Detail of how connections from HVC to auditory cortex,

learned in Process 3, could create a match-to-target signal. Specifically, each auditory neuron acts as a coincidence detector and only spikes if it

simultaneously receives timing input from HVC and the correct auditory input from earlier auditory areas. The population of auditory neurons thus

produces a continuous, temporally precise evaluation signal informing the song performance prediction error signal observed in VTA [23��].

Current Opinion in Neurobiology 2018, 49:59–68 www.sciencedirect.com
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After this HVC-to-auditory mapping is learned, individ-

ual auditory neurons would receive coincident input from

auditory afferents and from HVC whenever the bird sings

the correct sound at the correct time. If these neurons

acted as coincidence detectors, then as a population they

would provide a dynamic and temporally precise measure

of how well the song matches the tutor memory. Notably,

error-related signals have been observed in CM [21], and

at each stage in a pathway that connects CM to the basal

ganglia RL circuitry [22], via a projection from the dopa-

minergic midbrain area VTA [23��]. A key open question

is how the performance evaluation signal generated by

our model might be transformed into a performance

prediction error signal of the type reported in songbird

VTA.

Process 4: Learning connections from HVC to down-

stream nucleus RA to generate the desired sound at each

time in the HVC sequence. This learning proceeds in two

stages: first, computation of a bias in vocal variability that

drives the motor system up a local gradient of song

performance, and second, Hebbian learning at HVC-to-

RA synapses to integrate the local gradient over time, thus

consolidating long-term changes in the song motor path-

way [13��,14]. Recent modeling work [27] suggests that

efficient learning at HVC-to-RA synapses requires a

matching of the biased activity in LMAN with the form

of the local learning rule in RA [69,70].

Discussion
Several functions have been proposed for auditory-HVC

interactions other than the role we have hypothesized.

Prather et al. argued that HVC may provide a motor-based

prediction of auditory feedback [68], based on the obser-

vation that HVC sequences in adult birds are reactivated

during exposure to the bird’s own song, and building on

previous ideas that HVC may be involved in computing

an internal prediction or ‘efference copy’ of auditory

feedback [71]. In addition, disruption of HVC during

tutor exposure impairs song imitation [72], leading to

the suggestion that HVC may actually encode auditory

memories. Other hypotheses are that such interactions

play a role in constructing a sensorimotor ‘inverse model’

[56�,57,58,73,74], or inferring latent structure in songs of

conspecifics to aid recognition [75]. These views are not

mutually exclusive with our proposed hypothesis.

An emerging principle is that motor sequences for com-

plex learned behaviors could be shaped by behavioral

targets represented in sensory areas, and that this shaping

may involve direct synaptic interactions between motor

and sensory circuits, independent of reinforcement learn-

ing mechanisms. Such direct shaping could solve two

fundamental challenges in learning complex sequential

behaviors. First, through observing a tutor, sensory areas

could specify the number and durations of behavioral

chunks that the motor system should perform. Second,
www.sciencedirect.com 
motor sequences built this way would, by construction, be

aligned with corresponding sensory representations,

allowing for a temporally specific readout of performance

errors. With these challenges met, the brain could then

efficiently deploy simple associative RL algorithms to

refine behavior through trial and error.
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17. Ölveczky BP, Otchy TM, Goldberg JH, Aronov D, Fee MS:
Changes in the neural control of a complex motor sequence
during learning. J Neurophysiol 2011, 106:386-397.

18. Stepanek L, Doupe AJ: Activity in a cortical-basal ganglia
circuit for song is required for social context-dependent vocal
variability. J Neurophysiol 2010, 104:2474-2486.

19. Kao MH, Doupe AJ, Brainard MS: Contributions of an avian
basal ganglia-forebrain circuit to real-time modulation of
song. Nature 2005, 433:638-643.

20. Leblois A, Wendel BJ, Perkel DJ: Striatal dopamine modulates
basal ganglia output and regulates social context-dependent
behavioral variability through D1 receptors. J Neurosci 2010,
30:5730-5743.

21. Keller GB, Hahnloser RHR: Neural processing of auditory
feedback during vocal practice in a songbird. Nature 2009,
457:187-190.

22. Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS: A role for
descending auditory cortical projections in songbird vocal
learning. Elife 2014, 3:e02152.

23.
��

Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR,
Goldberg JH: Dopamine neurons encode performance error in
singing birds. Science (80-) 2016, 354:1278-1282.

The authors record from dopamine neurons that project to Area X, the
song-related basal ganglia thought to be responsible for RL. They find
that these neurons convey a reward prediction error signal when birds are
learning to avoid noise bursts conditioned on the pitch at a particular
moment in the song. That is, they fire more when the song sounds better
than expected (catch trials), and less when it sounds worse than expected
(hit trials).

24. Ali F, Otchy TM, Pehlevan C, Fantana AL, Burak Y, Ölveczky BP:
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27. Teşileanu T, Ölveczky B, Balasubramanian V: Rules and
mechanisms for efficient two-stage learning in neural circuits.
Elife 2017:6.
Current Opinion in Neurobiology 2018, 49:59–68 
28. Sutton RS, Barto AG: Introduction to reinforcement learning.
Learning 1998, 4:1-5.

29. Hahnloser RHR, Kozhevnikov AA, Fee MS: An ultra-sparse code
underlies the generation of neural sequences in a songbird.
Nature 2002, 419:65-70.

30. Long MA, Jin DZ, Fee MS: Support for a synaptic chain model of
neuronal sequence generation. Nature 2010, 468:394-399.

31.
��

Picardo MA, Merel J, Katlowitz KA, Vallentin D, Okobi DE,
Benezra SE, Clary RC, Pnevmatikakis EA, Paninski L, Long MA:
Population-level representation of a temporal sequence
underlying song production in the zebra finch. Neuron 2016,
90:866-876.

The authors recorded a large population of HVC projection neurons and
found that the bursting activity of these neurons completely and nearly
uniformly covers time within the song.

32.
�

Lynch GF, Okubo TS, Hanuschkin A, Hahnloser RHR, Fee MS:
Rhythmic continuous-time coding in the songbird analog of
vocal motor cortex. Neuron 2016, 90:877-892.

The authors recorded a large population of projection neurons, and found
that they burst at times continuously distributed throughout the song.
While nearly uniform, burst density in HVC is rhythmically modulated,
especially in juvenile birds, suggesting this rhythm may be a relic of
rhythmic protosyllable development.

33.
�

Troyer TW, Brainard MS, Bouchard KE: Timing during transitions
in Bengalese finch song: implications for motor sequencing. J
Neurophysiol 2017, 118:1556-1566.

The authors analyze the timing of gaps between syllables in Bengalese
finches, which sing variable songs. Their data are consistent with a model
in which syllable selection happens early in the gap.

34.
��

Okubo TS, Mackevicius EL, Payne HL, Lynch GF, Fee MS: Growth
and splitting of neural sequences in songbird vocal
development. Nature 2015, 528:352-357.

This study recorded HVC projection neurons in young birds learning new
syllables. The transition from subsong to a protosyllable was marked by
the growth of a protosequence in HVC, which split into daughter
sequences as the protosyllable differentiated into daughter syllables.
HVC activity at all stages of development is consistent with a model
where simple plasticity rules and structured inputs cause an initially
random network to form and then split synaptic chains.

35. Barto AG, Mahadevan S: Recent advances in hierarchical
reinforcement learning. Discret Event Dyn Syst 2003, 13:
341-379.

36. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J,
Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G
et al.: Human-level control through deep reinforcement
learning. Nature 2015, 518:529-533.

37. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,
Lanctot M et al.: Mastering the game of Go with deep neural
networks and tree search. Nature 2016, 529:484-489.

38. Sussillo D, Jozefowicz R, Abbott LF, Pandarinath C: LFADS –
Latent Factor Analysis via Dynamical Systems. arXiv 2016,
1608.06315.

39. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y: Generative Adversarial Networks.
arXiv 2014:1406.2661.

40. Hinton GE, Osindero S, Teh Y-W: A fast learning algorithm for
deep belief nets. Neural Comput 2006, 18:1527-1554.

41. Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P, Bengio S:
Why does unsupervised pre-training help deep learning? J
Mach Learn Res 2010, 11:625-660.

42.
�

Gowanlock D, Tervo R, Tenenbaum JB, Gershman SJ: Toward
the neural implementation of structure learning. Curr Opin
Neurobiol 2016, 37:99-105.

The authors pose the idea of structure learning at a computational level,
point to the need to uncover neural implementations, and suggest a
computational framework, nonparametric heirarchical bayesian models.

43.
�

Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ: Building
Machines That Learn and Think Like People. arXiv
2016:1604.00289.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0065
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0065
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0065
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0070
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0070
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0070
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0075
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0075
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0075
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0080
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0080
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0080
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0085
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0085
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0085
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0090
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0090
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0090
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0125
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0125
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0125
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0100
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0100
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0100
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0100
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0105
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0105
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0105
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0110
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0110
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0110
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0115
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0115
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0115
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0120
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0120
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0120
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0095
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0095
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0095
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0130
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0130
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0130
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0130
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0135
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0135
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0135
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0140
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0140
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0145
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0145
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0145
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0150
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0150
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0155
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0155
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0155
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0155
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0155
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0160
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0160
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0160
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0165
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0165
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0165
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0170
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0170
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0170
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0175
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0175
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0175
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0180
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0180
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0180
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0180
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0185
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0185
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0185
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0185
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0195
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0195
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0195
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0200
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0200
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0205
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0205
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0205
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0210
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0210
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0210
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0215
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0215
http://refhub.elsevier.com/S0959-4388(17)30234-9/sbref0215


Building a state space for song learning Mackevicius and Fee 67
The authors pose several areas in which current machine learning
capabilities fall short of human learning. They argue that humans flexibly
build and use structured cognitive models to support rapid generalizable
learning.

44. Gershman SJ, Niv Y: Learning latent structure: carving nature
at its joints. Curr Opin Neurobiol 2010, 20:251-256.

45. Aronov D, Veit L, Goldberg JH, Fee MS: Two distinct modes of
forebrain circuit dynamics underlie temporal patterning in the
vocalizations of young songbirds. J Neurosci 2011, 31:
16353-16368.

46. Veit L, Aronov D, Fee MS: Learning to breathe and sing:
development of respiratory-vocal coordination in young
songbirds. J Neurophysiol 2011, 106:1747-1765.

47. Jun JK, Jin DZ: Development of neural circuitry for precise
temporal sequences through spontaneous activity, axon
remodeling, and synaptic plasticity. PLoS ONE 2007, 2:e723.

48.
��

Fiete IR, Senn W, Wang CZH, Hahnloser RHR: Spike-time-
dependent plasticity and heterosynaptic competition organize
networks to produce long scale-free sequences of neural
activity. Neuron 2010, 65:563-576.

The authors present a model for how HVC sequences may emerge from
initially random connectivity and simple plasticity rules (Hebbian spike-
timing-dependent-plasticity and hetersynaptic competition). They find
that their model assembles into synaptic chains of a variety of lengths.

49.
��

Roberts TF, Hisey E, Tanaka M, Kearney MG, Chattree G,
Yang CF, Shah NM, Mooney R: Identification of a motor-to-
auditory pathway important for vocal learning. Nat Neurosci
2017, 20:978-986.

The authors identify a population of cells in the premotor nucleus HVC
that project to the higher-order auditory area Avalanche (part of CM).
Genetically ablating these cells impairs the ability of young birds to imitate
a tutor, but does not impair normal adult song.

50. London SE, Clayton DF: Functional identification of sensory
mechanisms required for developmental song learning. Nat
Neurosci 2008, 11:579-586.

51. Yanagihara S, Yazaki-Sugiyama Y: Auditory experience-
dependent cortical circuit shaping for memory formation in
bird song learning. Nat Commun 2016, 7:11946.

52. Shank SS, Margoliash D: Sleep and sensorimotor integration
during early vocal learning in a songbird. Nature 2009, 458:
73-77.

53. Roberts TF, Tschida KA, Klein ME, Mooney R: Rapid spine
stabilization and synaptic enhancement at the onset of
behavioural learning. Nature 2010, 463:948-952.

54. Hamaguchi K, Tschida KA, Yoon I, Donald BR, Mooney R:
Auditory synapses to song premotor neurons are gated off
during vocalization in zebra finches. Elife 2014, 3:e01833.

55. Vallentin D, Long MA: Motor origin of precise synaptic inputs
onto forebrain neurons driving a skilled behavior. J Neurosci
2015, 35:299-307.

56.
�

Giret N, Kornfeld J, Ganguli S, Hahnloser RHR: Evidence for a
causal inverse model in an avian cortico-basal ganglia circuit.
Proc Natl Acad Sci U S A 2014, 111:6063-6068.

The authors measured the latency of motor delays following electrical
stimulation, as well as latency differences in sensorimotor mirror neurons
between singing and listening contexts. Their results are consistent with a
Hebbian model for the formation of a sensorimotor inverse model.

57. Hanuschkin A, Ganguli S, Hahnloser RHR: A Hebbian learning
rule gives rise to mirror neurons and links them to control
theoretic inverse models. Front Neural Circuits 2013, 7:106.

58. Hahnloser R, Ganguli S: Vocal learning with inverse models.
Principles of Neural Coding. CRC Press; 2013:547-564.

59. Schneider DM, Woolley SMN: Sparse and background-invariant
coding of vocalizations in auditory scenes. Neuron 2013,
79:141-152.

60. Bauer EE, Coleman MJ, Roberts TF, Roy A, Prather JF, Mooney R:
A synaptic basis for auditory-vocal integration in the songbird.
J Neurosci 2008, 28:1509-1522.
www.sciencedirect.com 
61. Akutagawa E, Konishi M: New brain pathways found in the vocal
control system of a songbird. J Comp Neurol 2010, 518:
3086-3100.

62. Woolley SMN, Gill PR, Theunissen FE: Stimulus-dependent
auditory tuning results in synchronous population coding of
vocalizations in the songbird midbrain. J Neurosci 2006,
26:2499-2512.

63. Margoliash D: Sleep, learning, and birdsong. ILAR J 2010,
51:378-386.

64. Margoliash D, Schmidt M: Sleep, offline processing, and vocal
learning. Brain Lang 2010, 115:45-58.

65. Derégnaucourt S, Mitra PP, Fehér O, Pytte C, Tchernichovski O:
How sleep affects the developmental learning of bird song.
Nature 2005, 433:710-716.

66. Hahnloser RHR, Fee MS: Sleep-related spike bursts in HVC are
driven by the nucleus interface of the nidopallium. J
Neurophysiol 2007, 97:423-435.

67. Hahnloser RHR, Kozhevnikov AA, Fee MS: Sleep-related neural
activity in a premotor and a basal-ganglia pathway of the
songbird. J Neurophysiol 2006, 96:794-812.

68. Prather JF, Peters S, Nowicki S, Mooney R: Precise auditory-
vocal mirroring in neurons for learned vocal communication.
Nature 2008, 451:305-310.

69. Stark LL, Perkel DJ: Two-stage, input-specific synaptic
maturation in a nucleus essential for vocal production in the
zebra finch. J Neurosci 1999, 19:9107-9116.

70. Garst-Orozco J, Babadi B, Ölveczky BP: A neural circuit
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