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ScienceDirect
Neuroscience research has become increasingly reliant upon

quantitative and computational data analysis and modeling

techniques. However, the vast majority of neuroscientists are

still trained within the traditional biology curriculum, in which

computational and quantitative approaches beyond

elementary statistics may be given little emphasis. Here we

provide the results of an informal poll of computational and

other neuroscientists that sought to identify critical needs,

areas for improvement, and educational resources for

computational neuroscience training. Motivated by this survey,

we suggest steps to facilitate quantitative and computational

training for future neuroscientists.
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Introduction
In 1952, in the Journal of Physiology, Hodgkin and Huxley

published their famous series of papers describing the

biophysical basis of the action potential and laying out the

mathematical framework underpinning much of modern

cellular neurophysiology [1–5]. Today, sixty-five years

later, the qualitative basis of the action potential is widely

taught in nearly every introductory neuroscience class.

However, because most biology students lack sufficient

quantitative training, the mathematical modeling so sem-

inal to their work may be daunting and is rarely taught.

Computational and theoretical approaches shape and

inform nearly every level of analysis in neuroscience.

These include biophysical and biochemical
www.sciencedirect.com 
characterizations of receptor and signaling proteins [6],

conductance-based models of single neuron voltage

dynamics [7,8], neural network models of circuit dynam-

ics [9,10] and plasticity [11], and statistical approaches to

cognition, reasoning, and behavior [12–14]. Computa-

tional neuroscience also provides many of the core data

analysis techniques used throughout neuroscience,

including bioinformatic analyses underlying genome-

wide screens [15–17]; statistical analyses of electrophysi-

ological, optical, and non-invasive functional imaging

data [18–20]; and signal-processing algorithms underlying

brain-machine interfaces and neural prosthetics [21,22].

More generally, computational neuroscience provides the

intellectual framework within which many of the brain’s

computations are now described. Hodgkin and Huxley’s

[1] and Rall’s [23,24] frameworks for describing single-

neuron computation are classics. Sensory coding studies

have been guided by principles of efficient coding [25]

and information theory [26] and, more recently, by

insights from deep networks [27]. Attractor dynamics

provide a conceptual framework for describing memory

networks [28,29]. Signal detection theory provides a

foundation for studies of decision-making [30–32]. Learn-

ing theory provides a framework for understanding how

changes at the behavioral level [e.g., 33,34] emerge from

plasticity rules at the single synapse and single neuron

levels [35,36].

The need for quantitative and computational approaches

is growing rapidly. Recording technology now allows for

simultaneous measurements of the activity of hundreds or

thousands of neurons in a single brain area, or even

throughout the entire brain of behaving animals [37].

New approaches to automated electron microscopic imag-

ing of brain tissue allow large scale neural circuit recon-

struction at single-synapse resolution [38]. Combining

such advances with those in molecular genetics, cell

biology, and functional imaging now makes it possible

to explore a single system or disease in depth at the

molecular, cellular, network, and behavioral levels. These

advances will require new methods for the analysis of

massive data sets and new theories and models to connect

such measurements to underlying computational

principles.

Neuroscience training must impart future neuroscientists

with the core quantitative and computational skills nec-

essary to keep up with these experimental advances, as

emphasized by a number of national reports focusing on

the future of neuroscience [39�,40�,41] and general
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biology education [42��,43�,44,45��,46]. These skills

include not only the ability to perform sophisticated

statistical analyses, but also the ability to interpret and

build quantitative models, design experiments to test

new models and theories, and form collaborations with

interdisciplinary teams. Imparting this knowledge pre-

sents a significant challenge to neuroscience departments

and programs.

Survey
To develop a more complete picture of the challenges

and opportunities facing computational neuroscience

education, we conducted an informal poll of a range of

leaders in computational neuroscience training, from

textbook authors to course directors, program officers,

and faculty representing different subfields of computa-

tional neuroscience from cellular biophysics to cognitive

neuroscience (Supplementary material 1). Our survey

asked respondents to give their opinions on three topics:

(1) Necessary curricular training for general neuroscience

and computational neuroscience-focused students

(Table 1), (2) Barriers to training in computational neu-

roscience (Table 2), and (3) Suggestions for improve-

ments to computational neuroscience training (Table 3).

In addition, we used the survey to gather a list of compu-

tational neuroscience training resources available to the

general community (Supplementary material 2).

Below, we summarize the key themes that emerged from

the survey responses. We note that the poll consisted of

open-ended rather than multiple choice questions. This

led to many rich and insightful comments. However, for
Table 1

Survey results on essential training for all neuroscience students and fo

whether the survey-taker’s research is primarily theoretical (24 respo

specific subtopics mentioned by respondents. Responses are merge

respondents may have omitted topics that are already standard i

Supplementary material 1

Topic Coursework for general neuroscience s

Respondent 

Theorists Experimentalists 

Core Neuro/Bio/Chem 10 16 

Computational Neuro 6 7 

Programming/CS 11 11 

Math Foundations 15 11 

Linear Algebra 8 5 

Probability Theory 3 4 

Differential Equations 3 1 

Nonlinear Dynamics 2 2 

Statistics/Data Analysis 14 12 

Statistics 9 11 

Data Analysis 9 4 

Signal Processing 4 4 

Machine Learning 0 0 

Other Math/Eng/Phys 6 7 
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the tabulation of requisite training topics (Table 1), this

format led to some ambiguities in interpretation; namely,

it was sometimes unclear, when a respondent failed to

mention a particular subject area, whether it was viewed

as already standard in most neuroscience program curric-

ula, viewed as unnecessary, or simply overlooked. Many

responses also did not clearly differentiate undergraduate

and graduate training needs, so we merged these catego-

ries in our analysis. Despite these ambiguities, several

recurring themes emerged across the set of responses, and

we focus our discussion around these.

Theme 1: More quantitative training is needed for students from
life science backgrounds. The most common refrain from

both theorists and experimentalists was that many stu-

dents from life-science backgrounds lacked sufficient

training in quantitative approaches, programming, and

algorithmic thinking (Table 2). For general neuroscience

students, the most commonly emphasized needs were for

further coursework and training in statistics and data

analysis, mathematics, and computer programming or

computer science. Also emphasized was the need for

coursework in computational neuroscience or other bio-

logical modeling. Within the category of statistics and

data analysis, many respondents explicitly distinguished

‘data analysis’ from statistics per se, emphasizing the need

for students to perform hands-on work with real data sets.

Within the mathematics curriculum, linear algebra and

probability theory were most commonly cited as impor-

tant subjects. Interestingly, the training needs identified

by experimental neuroscientists and theoretical neuros-

cientists were highly consistent (Table 1). Several
r students in computational neuroscience. “Respondent” refers to

ndents) or experimental (20 respondents). Indented items indicate

d across graduate and undergraduate students. Note that some

n the curriculum. For survey questions and methodology, see

tudents Additional coursework for computational

neuroscience students

Totals Respondent Totals

Theorists Experimentalists

26 6 5 11

13 9 10 19

22 8 9 17

26 15 16 31

13 5 7 12

7 5 7 12

4 2 6 8

4 6 6 12

26 7 8 15

20 6 6 12

13 2 4 6

8 3 2 5

0 7 6 13

13 9 10 19
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Table 2

Survey results on biggest barriers to training in computational neuroscience

Category Barrier # of responses

Students from life science

backgrounds

Insufficient quantitative training 21

Insufficient training in programming or algorithmic thinking 10

Student fear of not being good at math/programming 3

Lack of rigor of life science courses 1

Poor quality of teaching in math/computational techniques 1

The (wrong) idea that you need to come from a computational

background to become a computational neuroscientist

1

Students from quantitative

non-life science backgrounds

Insufficient biology training or experience with real biological data 8

Insufficient training in asking scientific questions and experimental design 2

Poor biological intuition or understanding of the big picture 2

Challenges of teaching in a

highly interdisciplinary field

Breadth of different mathematical topics needed, or lack of consensus for

which topics are most important to teach

8

Hard to teach to heterogeneous student population of those coming from

quantitative versus life science backgrounds

5

Need for an introductory-level textbook 3

Time required to learn math competes with time doing research and

reading literature

2

Not enough computational neuroscientists to provide the needed training 1

Value of computational

neuroscience

Perception of computational neuroscience as a specialty rather than

as part of core training needs

4

Lack of understanding of the value of computational neuroscience

or quantitative methods

3

respondents emphasized the need, at both the under-

graduate and graduate levels, for quantitative classes

tailored to students from life science backgrounds.

Finally, many respondents who recommended quantita-

tive coursework beyond calculus and introductory statis-

tics emphasized the importance of beginning this training

at the undergraduate level.

For students planning to work in computational neuro-

science, respondents suggested additional training in

mathematics, physics and engineering, computer science,

statistics, and notably, machine learning. Also empha-

sized was the need for this material at both the graduate

and undergraduate levels. In addition, several respon-

dents thought that students interested in computational

neuroscience would be best served by majoring in a

subject such as physics, math, or computer science rather

than in biology.

Respondents commented on the challenge of teaching

computational approaches in the context of neuroscience

programs in which students have remarkably heteroge-

neous quantitative backgrounds (Table 2). Courses often

comprised a bimodal population of students coming from

the life sciences versus the mathematical and physical

sciences, creating challenges in presenting both the math

and the biology in a way that is interesting and accessible

to all students. Another commonly noted challenge was

that the wide array of different mathematical tools used in

neuroscience makes it difficult to teach all of these

different topics in a single course. Further complicating
www.sciencedirect.com 
matters is the lack of consensus on which topics and

methods are most critical.

Theme 2: More biology training is needed for students from non-
life science backgrounds. The greatest challenge noted for

students from non-life science backgrounds was insuffi-

cient training in biology or experience with real biological

data (Table 2). Several respondents noted that this lack of

experience can lead to poor biological intuition, lack of

understanding of big picture concepts, and difficulty in

formulating good scientific questions or experimental

designs. To convey this background, it was suggested

that there should be broad, cross-topic biology courses for

such students that parallel the need for broad mathemat-

ical modeling courses for students from life science back-

grounds. Other suggestions included rotations through

experimental laboratories and experience with real bio-

logical data sets.

Theme 3: More training resources are needed for computational
neuroscience. The most commonly cited need was for a

general computational neuroscience textbook at a more

introductory level than the oft-used Dayan and Abbott

[47] (Table 3). Also noted was the need for more training

resources as well as a centralized repository in which to

host these resources. Suggested training resources for

students included online courses, tutorials, and topic-

specific modules and specialized books. Desired

resources for instructors included course notes, pedagogi-

cal exercises, and data sets for statistical analysis and

modeling. Computational neuroscience software
Current Opinion in Neurobiology 2017, 46:25–30
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Table 3

Survey results on ideas to improve computational neuroscience education and on identification of computational neuroscience training

resources that are missing or need improvement

Topic Idea for improving computational neuroscience training # of responses

Training resources in computational

neuroscience

General computational neuroscience textbook, written at a more introductory

level than current books

10

Additional online courses, tutorials, and topical modules; more

special-topics training schools

8

Advanced general computational neuroscience book, or textbooks

covering various specialty fields

6

Canon of pedagogical exercises in computational neuroscience 2

Training materials to teach students to think in high dimensions 1

Ethics training in scientific rigor and reproducibility 1

Quantitative/computational training for

students from life-science backgrounds

Offer or require biological modeling, computer science, or physics-concepts

courses targeted to life science students

7

More courses and teaching materials in data analysis, including the

incorporation of real-world data sets

6

More computational neuroscience in regular neuroscience textbooks 1

Biological training for students from

non-biology backgrounds

Require computational neuroscience students to do lab rotations 2

Offer broad survey biology courses for non-life science students 1

Repositories for training resources Centralized repository for computational neuroscience training

materials and exercises

3

Require papers to publish data sets and computer code 1

Create a practical guide to what computational neuroscience coursework

is necessary for different applications

1

Development of computational

neuroscience software

Open source software infrastructure and standardized data formats 2

Improvements to NEURON to make it easier to use and learn 1

Software engineering summer course 1

Outreach and diversity Expose high school students to the field 1

Create pipelines for recruiting under-represented minorities 1
platforms for data analysis and modeling were identified

as a need for the field, as well as mandatory posting of

code and data sets to public repositories. Available

resources suggested by respondents are provided in Sup-

plementary material 2; ideally, such materials could be

brought together in a single, well-organized, public repos-

itory that includes user ratings and intuitive search

criteria.

Theme 4: Cultural barriers are holding back the widespread
adoption of computational neuroscience approaches and train-
ing. Respondents noted multiple cultural barriers to the

widespread teaching and adoption of computational neu-

roscience techniques. These included the intimidation

many students experience from math and programming

topics, and a cultural misperception that only students

who start out in quantitative fields can become computa-

tional neuroscientists. More fundamentally, several

respondents noted that computational neuroscience is

too often undervalued or viewed as a specialty field rather

than a core training need, impairing its adoption into

standard neuroscience curricula. On a related note, sev-

eral respondents forcefully noted that computational

neuroscience should not exist as a distinct field, but rather

should be fully integrated as a set of tools applied across

the spectrum of neuroscience research.
Current Opinion in Neurobiology 2017, 46:25–30 
Conclusions and recommendations
Computational neuroscience provides powerful data anal-

ysis tools, theoretical frameworks, and computational

models that are applicable from the molecular to the

behavioral scales. These applications will only increase

as new experimental technologies enable the acquisition

of ever more massive data sets and the performance of

increasingly sophisticated experiments. Training in

computational neuroscience will allow researchers to take

full advantage of these data sets, revealing hidden struc-

ture through new data analysis methods and identifying

new principles of brain function through mechanistic

models and theories.

Our survey identified critical challenges and provided a

number of suggestions to facilitate the widespread adop-

tion of computational neuroscience training (Table 3).

First, life science students need better quantitative and

biological modeling skills. Undergraduates should, at a

minimum, take calculus; computer programming; statis-

tics (with probability); and a mathematical modeling

course that teaches core concepts from linear algebra,

differential equations, and probability in the context of

modeling neurobiological systems. The statistics and

modeling courses should be fully integrated with a
www.sciencedirect.com
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high-level programming language such as R or MATLAB

that enable hands-on analysis of real data sets and simu-

lation of mechanistic models. Students who enter neuro-

science graduate programs without such background

should be required to take remedial coursework in these

areas.

Second, students from the mathematical and physical

sciences need greater exposure to the details and diversity

of real-world biological systems. Neuroscience programs

should encourage physical and mathematical science

students to take their courses by offering more flexible

prerequisites and advertising their courses more broadly.

Physical, mathematical, and engineering science depart-

ments should allow their students to take suitable neuro-

science coursework as one of their electives and to per-

form for-credit research in a neuroscience laboratory.

Third, more training resources are needed, and these

should be organized into an easily navigable repository

that provides a centralized site for instructors and stu-

dents alike. A particular need is for course materials,

pedagogical exercises, and a textbook that address the

vast majority of students in neurobiology who come from

life science backgrounds and have little quantitative

background.

Meeting these needs can be challenging in practice. Most

fundamentally, it requires that life science departments

re-think what skills are important for students who will be

mid-career in 2050. This entails deciding what courses

should be offered, which of these should be required, and

what these courses’ prerequisites should be. We recom-

mend that such considerations start from the point of view

of what core thinking skills will be most valuable to

students’ future endeavors. This viewpoint should take

precedence over other factors such as a possible lack of

popularity of quantitative courses among students, or

departmental financial considerations that may be tied

to enrollment numbers. As emphasized by a host of

reports on undergraduate biology training from the AAAS

[42��], National Academies [41,44,45��], and American

Association of Medical Colleges [43�], modeling and

simulation have been repeatedly identified as core com-

petencies in modern biological and biomedical training.

As such, we recommend that quantitative and computa-

tional coursework be required by neurobiology programs.

Indeed, it is difficult to imagine that students without

such skills will be able to fully engage in many of the most

exciting future developments in neuroscience. The

importance of quantitative approaches was cogently sum-

marized by the Obama BRAIN initiative working group

[40�]:

“Brains—even small ones—are dauntingly complex . . .

In complex systems of this nature, our intuitions about

how the activity of individual components (e.g. atoms,
www.sciencedirect.com 
genes, neurons) relate to the behavior of a larger assembly

(e.g. macromolecules, cells, brains) often fail, sometimes

miserably. Inevitably, we must turn to theory, simulation,

and sophisticated quantitative analysis in our search to

understand the underlying mechanisms that bridge spa-

tial and temporal scales, linking components and their

interactions to the dynamic behavior of the intact

system.”

By training students to fully embrace quantitative

approaches, the field of neuroscience will move closer

to developing the tools and intuitions necessary to unravel

the inner workings of the mind and brain.
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