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SUMMARY

Songbirds learn and produce complex sequences of
vocal gestures. Adult birdsong requires premotor nu-
cleus HVC, in which projection neurons (PNs) burst
sparsely at stereotyped times in the song. It has
been hypothesized that PN bursts, as a population,
form a continuous sequence, while a different model
of HVC function proposes that both HVC PN and
interneuron activity is tightly organized aroundmotor
gestures. Using a large dataset of PNs and interneu-
rons recorded in singing birds, we test several pre-
dictions of these models. We find that PN bursts in
adult birds are continuously and nearly uniformly
distributed throughout song. However, we also find
that PN and interneuron firing rates exhibit significant
10-Hz rhythmicity locked to song syllables, peaking
prior to syllable onsets and suppressed prior to
offsets—a pattern that predominates PN and inter-
neuron activity in HVC during early stages of vocal
learning.
INTRODUCTION

Learned motor behaviors require animals to acquire and pro-

duce precisely timed motor sequences. The origin of temporal

control in motor behaviors remains unclear. While cortical motor

regions traditionally have been viewed as encoding features of

motor gestures (Evarts, 1968; Georgopoulos et al., 1988; Griffin

et al., 2015; Hatsopoulos, 2005; Kalaska, 2009; Mussa-Ivaldi,

1988; Paninski et al., 2004; Todorov, 2000), these models do

not address how sequences of motor gestures are produced

or appropriately timed. Recently, a number of studies have sug-

gested that, beyond just representing features of motor output,

motor regions may have intrinsic oscillatory dynamics (Church-

land et al., 2012) or sequential dynamics (Mita et al., 2009; Mur-

akami et al., 2014; Shenoy et al., 2013) to act as their own pattern

generators.

A similar set of issues has arisen recently in the field of vocal

control in the songbird. Birdsong is a complex learned behavior
involving a well-characterized set of brain regions (the song sys-

tem). Both the production and learning of birdsong requires the

avian premotor nucleus HVC (used as a proper name) (Aronov

et al., 2008; Long and Fee, 2008; Nottebohm et al., 1976; Vu

et al., 1998), a likely analog ofmammalianmotor cortex (Pfenning

et al., 2014). HVC contains at least two classes of projection

neurons (PNs) (Dutar et al., 1998; Kubota and Taniguchi, 1998;

Mooney, 2000)—neurons projecting to the premotor nucleus

robustus of the arcopallium (RA), part of a downstream motor

pathway that innervates muscles of the vocal organ, and neu-

rons projecting to Area X, part of a basal ganglia-thalamocortical

loop necessary for song learning (Ali et al., 2013; Bottjer et al.,

1984; Charlesworth et al., 2012; Scharff and Nottebohm,

1991). Both types of PNs generate sparse and brief (5- to

10-ms) bursts of spikes reliably active at one or a few times in

the song, with different neurons active at different times (Fuji-

moto et al., 2011; Kozhevnikov and Fee, 2007; Long et al.,

2010; Prather et al., 2008). The activity of HVC PNs has inspired

two incompatible views of HVC function.

In one view, the population of HVC PNs bursts continuously

throughout the song, essentially forming a clock that governs

the processes of song production and learning at every moment

in song (continuous-time model) (Fee and Goldberg, 2011; Glaze

and Troyer, 2007; Hahnloser et al., 2002; Leonardo and Fee,

2005; Long and Fee, 2008; Long et al., 2010). For example, in

one simple mechanistic model of song production, a unique

ensemble of RA-projecting HVC (HVC(RA)) neurons bursts at

each time in the song, driving a continuous and varying pattern

of activity in the downstream vocal premotor pathway (Fee

et al., 2004; Leonardo and Fee, 2005). Continuous activity in

HVC(RA) neurons also figures into recent models of sequence

generation in which these neurons form a synaptically connected

chain that supports the propagation of bursting activity (Glaze

and Troyer, 2007; Hanuschkin et al., 2011; Jin et al., 2007; Li

and Greenside, 2006; Long and Fee, 2008; Long et al., 2010).

Finally, a recent model of vocal learning (Fee and Goldberg,

2011) incorporates X-projecting HVC (HVC(X)) neurons to form

a continuous-time code (or clock), allowing temporal specificity

in learning (Charlesworth et al., 2011; Fee and Goldberg, 2011;

Ravbar et al., 2012).

All of these models require continuous sequential activity in

the population of HVC PNs; thus, we refer to them collectively

as continuous-time models. While the simplest instantiations of
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these models generally assume an equal number of neurons

participating at each time in the sequence, such a uniform den-

sity of bursts is not required for their function.

An alternative hypothesis has been proposed recently (Ama-

dor et al., 2013), in which HVC activity is organized around a

small number of time points in the song corresponding to

discrete events in the trajectory of vocal control parameters,

called gesture trajectory extrema (GTE). Amador et al. (2013) re-

ported that bursts of PNs, as well as the minima of interneuron

firing rates, were tightly synchronized with GTEs (4- to 7-ms

SD). Based on their observations, Amador et al. (2013) went on

to conclude that HVC PNs, as a population, must be silent be-

tween GTEs. Not only are these findings incompatible with the

continuous-time models described above, but the near-zero la-

tency of HVC bursts relative to song features rules out a premo-

tor role for HVC in vocal output. In short, the GTE model would

force a dramatic revision of our understanding of the mecha-

nisms of song production.

Here we set out to reexamine the relation between HVC activ-

ity and vocal structure in the song by analyzing a large dataset of

PNs and interneurons recorded in singing birds. Our analysis

initially focused on neurons recorded in birds with mature adult

song, testing the continuity and uniformity of HVC burst

coverage, as well as investigating the alignment of PN and inter-

neuron activity to GTEs and other song features. In adult birds,

we found that HVC PNs, as a population, provide continuous

and nearly uniform coverage of song. However, we also found

that both HVC(X) neurons and interneurons exhibit a rhythmic

modulation in firing rate coherent with an underlying �10-Hz

rhythmicity in song syllable structure, a feature not predicted

by either the GTE or uniform models. Further, analysis of HVC

neurons recorded in juvenile birds suggested that such rhythmic

modulation may be a remnant of a developmental process in

which oscillatory HVC activity drives the rhythmic repetition of

early prototype syllables (Okubo et al., 2015; Tchernichovski

et al., 2001).

RESULTS

HVC Bursting Produces Continuous Coverage of Time in
the Song
While the continuous-time models make no specific prediction

about the distribution of bursts in the song, they require that

there be no periods of inactivity in the population of PNs. To

test this prediction, we analyzed a large dataset of 450 neurons

recorded during singing, which included 595 burst times gener-

ated by 384 PNs. The distribution and continuity of PN bursts in

the song motif were quantified by identifying bursts from a histo-

gramof spike times (Figure 1F). Subtle rendition-to-rendition var-
Figure 1. A Large Dataset of HVC Neurons Recorded in Singing Birds

(A–E) Summary of PN and interneuron data for birds 1–5, respectively. Spectrogr

Below is a heatmap summary of PN bursting activity. Each row shows the smoot

from one neuron appear on different rows, sorted by burst time. At the bottom is a

rate of one recorded interneuron, normalized by its peak firing rate. No interneur

(F) Burst and minima times (green vertical lines) are calculated from smoothed tim

respectively). Vertical axis range is 500–7,500 Hz for all spectrograms.

See also Figure S1.
iations in song speed were accounted for by time-warping the

spike trains relative to syllable onsets and offsets (Kozhevnikov

and Fee, 2007) (see the Experimental Procedures). Visual in-

spection of the distribution of bursts in time (Figures 1A–1E

and S1A–S1E) suggested that the bursts provide nearly com-

plete coverage of the song motif. The fraction of the motif

covered by bursts (covered fraction) was quantified by deter-

mining the patches in time covered by the bursts of each neuron

(see the Experimental Procedures). The covered fraction was

defined, over all neurons, as the fraction of the entire song motif

covered by at least one patch. Across birds, the median covered

fraction was 96%, suggesting a very high degree of burst

coverage in most birds (Figure 2A). A significantly lower covered

fraction of only 67%was observed in one bird inwhich the fewest

neurons were recorded (bird 1). By simulating a large number

(104) of surrogate datasets, we found that the observed covered

fraction for all birds was consistent with random sampling from a

uniformunderlyingdistributionof burst times (uniformmodel; Fig-

ure 2A; p > 0.05 for all birds). Note that this does not imply that the

bursts are truly uniformly distributed, only that the observed

coverage metric is consistent with random burst placement.

We next examined how the covered fraction would be ex-

pected to vary with the number of neurons recorded. For each

bird, we generated surrogate datasets by resampling and shuf-

fling different numbers of bursts from our data (see the Experi-

mental Procedures). The number of bursts was expressed as

fold coverage (Figures 2B and S2A), defined as the ratio of total

burst duration to motif duration. Across birds, the simulated

covered fraction exhibited a rapidly saturating dependence on

fold coverage. Indeed, a fold coverage of ten resulted in a very

high probability (>95%) of achieving total coverage (100%

covered fraction) by bursts in the surrogate datasets (Fig-

ure S2B). Finally, the observed covered fraction for the individual

PN subtypes was well explained by this saturating dependence

(blue curve, Figures 2B and S2A).

Quantification of HVC Clustering
Although the bursts of PNs in our dataset provided nearly com-

plete coverage of the song, the bursts appeared to exhibit some

degree of clumping in time (Figures 1A–1E). We wondered if this

apparent clustering is simply due to random sampling of neurons

or, alternatively, if it is more consistent with the alignment of

many bursts at GTE times, as predicted by the GTE model. To

address this question, burst times within the song motif were in-

ferred from the histogram of time-warped spikes (see the Exper-

imental Procedures). We examined the distribution of intervals

between all burst times recorded in a single bird (population in-

ter-burst interval, IBI), and we compared it to the uniform model

(Figures 3A and S3A), in which burst times are described by a
ams shows the song motif for each bird; tick marks below indicate GTE times.

hed firing rate (normalized by peak firing rate) of a single burst; multiple bursts

heatmap summary of interneuron activity. Each row shows the smoothed firing

ons were recorded in bird 5.

e histograms (black traces) of PN and interneuron spike trains (top and bottom,
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Figure 2. Fraction of SongMotif Covered by

Bursts

(A) Summary of the fraction of the song motif

covered by PN bursts for all five birds (covered

fraction; black circles). Also shown is the 95%

confidence interval of the covered fraction deter-

mined from random shuffling of burst times (ver-

tical blue bars) and the 95% confidence interval of

covered fractions predicted by the GTE model

(i.e., with bursts placed around GTEs; vertical

orange bars).

(B) The covered fraction calculated as a function of

the number of bursts in the dataset (black trace,

bursts randomly subsampled from observed

bursts). Subsampled dataset size is expressed as

fold coverage (sum of burst durations divided

by motif duration). Data points show observed

covered fraction for all bursts (black circle), HVC(X)

neurons (black diamond), and HVC(RA) neurons

(black square). Also shown is median covered fraction in 10,000 surrogate datasets in which bursts are randomly shuffled (uniform model; blue line) and median

covered fraction for surrogate datasets in which bursts are placed around GTEs (GTE model; orange line). Model results are shown as a function of dataset size

(fold coverage; see the Experimental Procedures). Shaded bands indicate 95% confidence interval (2.5 to 97.5 percentiles) of Monte Carlo results.

Results for all birds (birds 1–5) and simulations to determine the relation between probability of total coverage and fold coverage are shown in Figure S2.
Poisson process with an exponential distribution of IBIs. For four

of five individual birds, the measured IBI distributions were

consistent with the uniform model (Kolmogorov-Smirnov test,

p > 0.28 for four birds), while the remaining bird (bird 2) showed

a small deviation from uniformity (K-S test, p = 0.014, not signif-

icant after Bonferroni correction for five comparisons). A similar

pattern of results was found with other measures of the IBI dis-

tribution focusing on the longest and shortest intervals (Figures

3B, 3C, S3B, and S3C). Bursts also were analyzed using a sen-

sitive metric of clustering (Ripley’s-L), and were found to be

consistent with the uniform model in four of five birds (Figure 3D;

p > 0.32). A small but significant self-clustering of bursts was de-

tected by the Ripley’s-Lmetric in one bird (Figure S3D; bird 2; p =

4.0e�4; 10%excess burst density in a 20-mswindow compared

to randomburst placement). Thus, while largely consistent with a

uniform distribution of burst times, these results reveal a small

degree of non-uniformity that will be addressed further.

We next wondered how these measures of burst distribution

compare to the predictions of the GTE model. For each bird, a

large number (104) of surrogate datasetswas generated, in which

bursts were placed around measured GTEs with a Gaussian dis-

tribution. Foreachbird, thewidthof thisGaussiandistributionwas

chosen to reproduce the burst-to-GTE variance reported by

Amador et al. (2013) (average SD of 8 ms). In comparison to the

uniform model, the GTE model predicts that bursts would cover

a significantly lower fraction of the song (Figures 2B and S2A). It

also predicts a larger number of short IBIs in the IBI distribution

(Figures 3A, 3B, S3A, and S3B), due to the clustering of many

bursts around a small number of GTEs, and a longer maximum

IBI, due to the lack of bursts between GTEs (Figures 3C and

S3C). The high degree of burst clustering in the GTE model was

readily detected by the Ripley’s-L metric (Figures 3D and S3D).

For all birds, the measured values of each of these metrics were

inconsistent with the predictions of the GTEmodel (covered frac-

tion: p% 2e�4 in all birds; IBI: p% 4e�4 in birds 1, 2, 3, and 5 and

p % 0.013 in bird 4; Ripley’s-L: p % 5e�3 in all birds).
880 Neuron 90, 877–892, May 18, 2016
The analyses described above, and shown in the main

figures, were carried out with GTEs identified using the method

described by Amador et al. (2013) (Figures S1F–S1I). These an-

alyses also were repeated using a recently published method for

automatic identification of GTEs (Boari et al., 2015). While these

methods produced somewhat different GTE times (Figures S1A–

S1E, S1J, and S1K), the data were inconsistent with the predic-

tions of the GTE model using either set of GTEs (Figure S3H).

Coordination of HVC PN and Interneuron Activity
HVC interneurons play a significant role in several models of

sequence generation and learning in HVC (Amador et al., 2013;

Dutar et al., 1998; Kosche et al., 2015; Long et al., 2010; Marko-

witz et al., 2015; Marler and Peters, 1982; Mooney and Prather,

2005; Vallentin et al., 2016), and somemodelsmake specific pre-

dictions about the relative timing of interneuron and PN activity.

For example, the GTE model predicts that local minima in the

firing rate modulations of HVC interneurons coincide with GTEs

(Amador et al., 2013). Interneurons were recorded in four of

five adult birds (HVCi n = 65; birds 1–4), and they were found

to spike continuously during the song motif while exhibiting

song-locked firing rate modulations (Figures 1A–1F), as previ-

ously described (Kosche et al., 2015; Kozhevnikov and Fee,

2007; Markowitz et al., 2015; Yu and Margoliash, 1996). No sig-

nificant correlation was observed between interneuron minima

and burst times (Figures 3E and S3I) (p = 0.60, population

mean; 1,728 minima; average of 26 ± 5 mean ± SD minima per

motif per neuron; see the Experimental Procedures). Instead,

interneuron firing rates increased at times of high PN burst den-

sity (Figures 3F and 3G); however, this pattern was somewhat

different for HVC(X) and HVC(RA) subtypes. The correlation of

interneuron firing rates with HVC(X) activity exhibited a strong

peak at zero lag and a slow oscillation at longer lags (Figures

3F and S3J; burst correlation peak 4 ± 2 ms, ± SE; positive

lag indicates PN leading interneuron; significance of peak, p %

1e�4), while the correlation with HVC(RA) activity revealed a
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Figure 3. Quantification of HVC Clustering

(A) Cumulative distribution of the time intervals between all bursts recorded in bird 3 (IBIs; black trace), is compared to the median prediction of the uniform and

GTE models (blue and orange lines, respectively; shaded region indicates 95% confidence interval).

(B) Fraction of IBIs less than 5 ms in bird 3 (vertical dashed black line) and distributions predicted by the uniform and GTE models (blue and orange curves,

respectively) are shown.

(C) Longest interval between bursts recorded in bird 3 (black dashed line) is shown.

(D) Ripley’s-L metric of clustering for bursts recorded across all birds is plotted as a function of the window size t (black trace) and compared to the prediction of

the uniform and GTE models (blue and orange solid lines, respectively; shading indicates 95% confidence interval).

(E) Cross-correlation between PN burst times and interneuron minima averaged across birds (black trace, negative lags indicate that minima precede bursts) is

compared to the predictions of the uniform and GTE models (solid blue and orange curves, respectively; shading indicates 95% confidence interval in each lag

bin, horizontal dashed lines indicate 95% confidence interval for maxima and minima of the uniform model anywhere in this window).

(F and G) Population average interneuron firing rate aligned at (F) HVC(X) burst times and (G) HVC(RA) burst times (black trace; median firing rate within 100 ms of

burst, solid blue line). Clustering metrics for HVC(X) and HVC(RA) neurons are shown in Figure S3.
more complex pattern with multiple peaks (Figures 3G and S3K)

and with greater bird-to-bird variability, perhaps reflecting the

smaller number of HVC(RA) neurons recorded.

Quantification of Alignment of Bursts and Minima to
Temporal Features of Song
We next set out to determine whether PN bursts or interneuron

minima are significantly aligned to syllable onsets, offsets, or

GTEs. A cross-correlation analysis revealed that bursts are not

significantly aligned at times of syllable onsets (p = 0.64), syllable

offsets (p = 0.93), or GTEs (p = 0.40) (Figures 4A–4C and S4A).

Similarly, interneuron minima exhibited no significant alignment

at syllable onsets, offsets, or GTEs (Figures 4D and S4E). This

result was confirmed with an alternative metric (Amador et al.,

2013) basedon the distribution of timedifferences between neural

events and theGTEsclosest to them (see the Experimental Proce-

dures). These time differences were found to vary more widely
(SD 8.7–17.9 ms for bursts and 9.2–16.8 ms for minima) than pre-

viously reported (4.0ms for bursts and4.0ms forminima) (Amador

et al., 2013). The measured time differences are inconsistent

with the predictions of the GTE model (pGTE < 2.0e�4 for bursts

and minima), and are instead consistent with a uniform random

placement of burst and minima times in all birds (Figures 4E, 4F,

S4F, andS4I; bursts:minimump=0.046, not significant after Bon-

ferroni correction for five comparisons; minima: minimum p =

0.015, not significant, four comparisons). A separate analysis of

HVC(X) and HVC(RA) neurons produced similar results (Figures

S4G and S4H), as did an analysis carried out for GTEs identified

by the automated method of Boari et al. (2015) (Figure S4B).

While we found no evidence for clustering of bursts at syllable

onsets or offsets, we found that the density of HVC bursts was

significantly higher in the first half of song syllables than in the

second half, principally due to HVC(X) bursts (HVC(X) burst den-

sity 1.5-fold higher in first half than second half; p = 0.018,
Neuron 90, 877–892, May 18, 2016 881
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Figure 4. Variations in Density of HVCActiv-

ity around Temporal Features of Song

(A) Cross-correlation between bursts and syllable

onsets, averaged across all birds (black trace,

bursts lead onsets for negative lags). Horizontal

dashed lines indicate 95% confidence interval for

maxima and minima for shuffled data anywhere in

this window.

(B) Cross-correlation between bursts and syllable

offsets, averaged across all birds, is shown.

(C) Cross-correlation between bursts and GTEs

times, averaged across all birds (black line), is

compared with the median predicted value of both

the uniform and GTE models (solid blue and or-

ange lines, respectively; shading indicates 95%

confidence interval in each bin; horizontal dashed

lines indicate 95% confidence interval for maxima

and minima anywhere in this window, for uniform

model).

(D) Cross-correlation between interneuron minima

and GTE times, averaged across the four birds in

which interneurons were recorded, is shown.

(E) Metric of alignment between bursts and GTEs,

based on the distribution of time differences be-

tween bursts and the GTEs closest to them. The

observed SD for bird 3 is shown (dashed vertical

line, blue and orange curves indicate predictions

of uniform and GTE models, respectively).

(F) Sameanalysis as (E), but for interneuronminima.

Results for all birds, aswell as identifiedHVC(X) and

HVC(RA) neurons, are shown in Figure S4.
Wilcoxon signed-rank). No significant modulation was observed

for HVC(RA) bursts (1.24-fold higher; p = 0.65). These findings

suggest that the density of HVC bursts exhibits a slow syllable-

related modulation not apparent in the cross-correlation ana-

lyses of Figures 4A and 4B.

Covariation of HVC Spike Timing and Song Timing
The continuous-time model predicts that HVC bursts exert a

causal premotor influence on the timing of song structure,

such as syllable onsets or offsets, regardless of variations in

burst density. To see if our data are consistent with this view,

we adopted a measure how HVC spike timing co-varies with

these events (Ali et al., 2013). The cross-trial correlation between

song-aligned time-warped spike trains across different song

renditions was computed as a function of the delay of the align-

ment windows. An analysis of simulated spike trains, based on a

chain model of HVC sequences, shows that the cross-trial corre-
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lation exhibits a peak when the alignment

windows are advanced by a delay corre-

sponding to the premotor latency (Fig-

ure S5). For measured PN spike trains,

we observed a clear and uniquemaximum

in this correlation at a premotor delay of

29 ± 4 ms (Figure 5A, ±SE; see the Exper-

imental Procedures). A similar latency

was obtained separately for HVC(X) and

HVC(RA) subtypes (Figures 5B and 5C;

HVC(RA): 28 ± 16 ms ; HVC(X): 28 ± 5 ms).
Interneurons exhibited a broad peak with no clearly defined

maximum (Figure 5C).

Covariation of HVC Activity with Song Spectral Features
Although our findings suggest that HVC PNs are continuously

active throughout song, the evidence described above—that

bursts are less prevalent in the second half of song syllables—

led us to wonder if such variations may be related to song spec-

tral features (Tchernichovski et al., 2000). The burst density and

population-average firing rate of PNs were analyzed for correla-

tion with six commonly used spectral features (pitch goodness,

Wiener entropy, amplitude, amplitude modulation, frequency

modulation, and gravity center). Of these, only pitch goodness,

a measure of harmonicity of sound, exhibited significant correla-

tion after Bonferroni correction for multiple comparisons (Figures

6A and S6A; six comparisons). However, further analysis re-

vealed that HVC PN activity was significantly weaker only during
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Figure 5. Covariation between HVC Spike Timing and Song Timing

Syllable onset and offset times are used to time-warp spike trains across

different song renditions. The mean correlation of spike trains from different

renditions is plotted as a function of how much the time-warping intervals are

shifted relative to syllable onsets and offsets. Note that amaximum correlation,

indicating optimal spike train alignment across renditions, occurs when the

warping intervals are shifted 29 ms prior to syllable onsets and offsets.

(A) Mean spike-train correlation as a function of shift for HVC PNs is shown

(shaded region indicates SEM).

(B) Spike-train correlation is plotted separately for identified HVC(X) and

HVC(RA) PNs (purple and green, respectively).

(C) Spike-train correlation for HVC interneurons. Simulations validating this

technique are shown in Figure S5.
low-frequency (<750-Hz) harmonic sounds, while the activity

during high-frequency (>750-Hz) harmonic sounds was actually

higher on average than during non-harmonic sounds (Figure 6B;

one-way ANOVA, based on burst density p = 0.0013, based on

firing rate p = 4e�5; compared to average burst density, the me-

dian burst density during low pitch, high pitch, and non-harmonic

sounds was 0.43, 1.27, and 1.08, respectively). Note that,

despite the lower burst rate during low-frequency harmonic ele-

ments (LHEs; median burst density 57% lower than average

density), bursts in our dataset occurred throughout these sylla-

ble elements (Figure 6C).

A separate analysis of different PN subtypes revealed a signif-

icantly lower HVC(X) burst probability during LHEs than expected

for randomburst placement (ratio of probabilities 0.56; p = 0.001,

two-tailed, bionomial test; n = 269 bursts). No significant modu-

lation was found for HVC(RA) neurons (ratio 0.78; p = 0.65; n = 47

bursts). HVC interneurons exhibited a similar pattern of modula-

tion with LHEs as did HVC(X) neurons (Figures S6C and S6D).

The reduced HVC activity during LHEs was most prominent at

zero premotor latency, but it reached statistical significance in a

range of latencies from�20 ms (burst preceding LHE) to +10 ms

(burst following LHE).

Notably, in our dataset, LHEs occurred significantly more

often in the second half of song syllables than in the first half

(average probability of LHE 2.47-fold higher; p < 0.01, Wilcoxon

signed-rank), consistent with the lower density of HVC(X) bursts

during the second half of song syllables.

HVC Firing Rates Exhibit Slow Syllable-Related
Modulations
These observations led us to carry out a more detailed quantifi-

cation of syllable-related modulations in the spiking activity of

HVC neurons. Syllable onset-aligned and offset-aligned spike

histograms of the interneuron population revealed a significant

slow modulation peaking prior to syllable onsets (maximum at

18 ± 2 ms, ±SE, see the Experimental Procedures) and dipping

prior to syllable offsets (minimum at 23 ± 2 ms) (Figures 7A,

7B, S7A, and S7B; average over all birds, p % 1e�4 for both

comparisons). Interneurons also exhibited a weak but significant

increase in firing rate prior to GTEs (Figure 7C; 23 ± 2 ms; p %

1e�4). PN firing rates exhibited a pattern of modulation roughly

similar to that of interneurons, but this did not reach statistical

significance in the windows prior to syllable onset or syllable

offset (Figures 7G–7I; average over all PNs). Such modulations

in PN firing rates may be explained in part by a slow modulation
Neuron 90, 877–892, May 18, 2016 883
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Figure 6. Covariation of HVC Activity with Song Spectral Features

(A) Scatterplot of HVC burst density, expressed as a multiple of mean burst rate, versus pitch goodness, averaged in 15-ms intervals. Periods of harmonic sound

(pitch goodness > 0.5) are further classified as either low pitch (<750 Hz, green dots) or high pitch (>750 Hz, purple dots).

(B) Cumulative distribution of the burst rate during song times classified as non-harmonic (red), harmonic (yellow), low-pitch harmonic (green), or high-pitch

harmonic (purple).

(C) Raster plots of PN spike trains shown for five song syllables with strong harmonic components. Pitch goodness is shown at top (blue trace). Times classified as

low-pitch harmonic elements are indicated by green bars at top. Syllables shown here are indicated in Figure 1 by an asterisk above the spectrograms. A similar

analysis with firing rates is shown in Figure S6.
in burst density, as described above, and also by a significantly

higher spike rate within bursts around syllable onsets compared

to bursts around syllable offsets (average 307 Hz in a window

�30 ms to +10 ms around onsets; average 256 Hz in the same

window around offsets; p = 0.001, rank-sum test).

While most adult zebra finch song is not highly rhythmic, it has

been reported that these songs can contain an underlying

rhythm in the 10-Hz range (Saar and Mitra, 2008), leading us to

wonder if the observed HVC firing rate modulations also may

have a rhythmic component. Consistent with previous reports,
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we found that the song amplitude profile of all of our adult birds

exhibited a distinct spectral peak near 10 Hz (Figures 7D and

S7C, range 7–10 Hz). The population spike trains of both inter-

neurons and PNs exhibited a broad spectral peak near this

same frequency (Figures 7D, 7J, S7C, and S7F). Further analysis

revealed a large peak in the cross-spectral density between

interneuron spike trains and song amplitude (Figures 7E and

S7D, average over all interneurons), as well as a significant

coherence at 10 Hz (Figures 7F and S7E; peak coherency at

10 Hz = 0.40 ± 0.03 SE; p < 1e�4; phase = �0.81p radians).
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(A) Peri-event time histogram (PETH) of HVC interneuron firing rates aligned at syllable onsets, averaged across all birds, is shown (black trace, solid blue line

indicates median interneuron firing rate; horizontal dashed lines indicate 95% confidence interval for maxima and minima in this window for shuffled data).

(B) Same as (A) is shown, but for interneuron firing rates aligned at syllable offsets.

(C) Histogram of interneuron firing rates aligned at GTE times is shown.

(D) Normalized spectrum of song amplitude (rhythm spectrum, green curve) and interneuron spike trains (purple curve), averaged over all birds. Vertical dashed

line indicates 10 Hz.

(E) Cross-spectral density of the song amplitude and interneuron spike trains, averaged across birds, is shown.

(F) Magnitude of coherency between song amplitude and interneuron spike trains, averaged across birds, is shown (black trace; solid blue curve, median;

shading, 95% range of shuffled datasets).

(G–L) Same as in (A)–(F) are shown, but for all PN spike trains.

(M and N) Magnitude of coherency between song amplitude and PN spike trains, plotted separately for (M) HVC(X) and (N) HVC(RA) neurons.

Results for individual birds are shown in Figure S7.
A similar coherence analysis for PNs showed aweaker but sig-

nificant peak in the cross-spectral density and coherence near

10 Hz (Figures 7K, 7L, S7G, and S7H; average over all PNs;

peak coherency at 10 Hz = 0.056 ± 0.015; p = 0.013; phase =

�0.84p radians). Separate analysis of PN subtypes revealed
no significant modulation in the population of HVC(RA) neurons

(coherency at 10 Hz = 0.06 ± 0.04; p = 0.69; n = 57 neurons),

but it did reveal significant rhythmic modulation of HVC(X) firing

rates (coherency at 10 Hz = 0.08 ± 0.02; p = 0.0012; n = 238 neu-

rons). The phase of the HVC(X) coherence was close to that of
Neuron 90, 877–892, May 18, 2016 885
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interneurons (�0.74p and �0.81p radians, respectively). A

similar coherence analysis using burst times rather than spike

times yielded a qualitatively similar pattern of findings, suggest-

ing that HVC(X) neurons exhibit a rhythmic modulation of burst

density.While we cannot rule out rhythmicmodulation of HVC(RA)

activity, no significant modulation was observed in any of our

analyses.

HVC Activity in Juvenile Birds
Recordings in HVC of juvenile birds suggest that the rhythmic

modulation in adult HVC may be explained in a developmental

context. HVC PNs in young birds exhibit strongly rhythmic sylla-

ble-locked bursting that emerges at an early stage of song

learning (Okubo et al., 2015), in which birds produce rhythmic

protosyllables at roughly 10 Hz (Liu et al., 2004; Saar and Mitra,

2008; Tchernichovski et al., 2001). We analyzed a dataset of 116

HVC neurons recorded in young birds before they developed a

mature song motif (n = 20 birds; 43–54 days post-hatching

(dph); spanning subsong and protosyllable stages). We found

that interneurons (n = 29 neurons; 15 birds) exhibited firing pat-

terns qualitatively similar to those observed in adult birds (Fig-

ures 8A, S8A, and S8B) (Kosche et al., 2015; Kozhevnikov and

Fee, 2007; Markowitz et al., 2015; Yu and Margoliash, 1996).

They generated continuous spiking and bursting at an average

firing rate of 81 ± 27 Hz during singing and 14 ± 7 Hz outside

of singing (mean ± SD) (Figure S8C). Themajority of individual in-

terneurons exhibited a peak in firing rate prior to syllable onsets

(Figure 8B; 27 of 29; threshold p < 0.005) and a dip prior to sylla-

ble offsets (Figure 8C; 24 of 29; p < 0.005). A similar pattern of

modulation was observed in the population average interneuron

firing rate (Figures 8D and 8E; peak 18 ± 1ms prior to onset, ±SE;

dip 22 ± 2 ms prior to offset; p < 1e�4). Spectral analysis re-

vealed a significant peak in the spike spectrum for a large frac-

tion (17/29) of individual interneurons in our juvenile dataset (be-

tween 4 and 15 Hz; Figures S8A and S8B), as well as in the

population average spike spectrum (Figure 8F). A corresponding

peak at�10 Hz was seen in the cross-spectral density and in the

coherence between song amplitude and the population of inter-
Figure 8. HVC Activity in Juvenile Birds

(A) Example of a putative HVC interneuron recorded during juvenile song (47 dph

(B) Syllable onset-aligned raster and histogram for the neuron shown in (A), sorted

syllable offset.

(C) Syllable offset-aligned raster and histogram for the neuron in (A) are shown.

(D) Mean syllable onset-aligned activity over all the putative HVC interneurons re

indicates the median; dashed lines indicate 95% confidence interval for maxima

(E) Same as in (J) is shown, but for syllable offset-aligned activity.

(F) Normalized spectrum for song amplitude and interneuron spike trains (green

indicates 10 Hz.

(G) Cross-spectrum between song amplitude and interneuron spike trains is sho

(H) Magnitude of coherency between song amplitude and interneuron spikes is sh

in shuffled data).

(I) Example of an HVC PN recorded during juvenile subsong (HVC(X), 45 dph) is s

(J) Syllable onset-aligned raster and histogram for the neuron in (I) are shown.

(K) Syllable offset-aligned raster and histogram for the neuron in (I) are shown.

(L) Mean syllable onset-aligned activity over all HVC PNs recorded between 40

median, and dashed lines indicate 95% range of maxima and minima in this win

(M) Same as in (L) is shown, but for syllable offset-aligned activity.

(N–P) Same as (F)–(H), but for PNs.

See also Figure S8.
neuron spikes (Figures 8G and 8H; peak coherency at 10 Hz =

0.38 ± 0.05, SE; p < 1e�4).

For PNs, a majority of both cell types (total of 87 neurons; 18

birds) exhibited a peak in firing rate prior to syllable onset and

a dip prior to syllable offset (Figures 8I–8K; significant peak in

55/87 neurons, p < 0.005; significant dip prior to offsets in 27/

87 individual PNs, p < 0.005). Notably, the population average

of both HVC(X) and HVC(RA) neuron firing rates exhibited a pattern

of modulations around syllable onsets and offsets similar to

that of interneurons (Figures S8D and S8E; peak 14 ± 4 ms prior

to onset, p < 1e�4; dip 17 ± 4ms prior to offset, p < 1e�4). Spec-

tral analysis revealed a significant peak in coherence between

the population of PN spikes and song amplitude (Figure 8P;

peak coherency at 10 Hz = 0.12 ± 0.03; p < 1e�4); a separate

analysis of PN subtypes revealed a robust and significant peak

in coherence at �10 Hz for both HVC(X) neurons (Figure S8F;

coherency magnitude at 10 Hz = 0.13 ± 0.03; p = 1e�4; n = 57

antidromically identified neurons) and HVC(RA) neurons (coher-

encymagnitude at 10 Hz = 0.12 ± 0.08; p = 0.04; n = 16 antidrom-

ically identified neurons). Notably, the phase relation between

song amplitude and HVC spiking was similar for both PN sub-

types and interneurons at the peak frequency (10 Hz; HVC(X)

phase = �0.74p; HVC(RA) phase = �0.68p; interneuron phase =

�0.84p), suggesting that the rhythmic modulations in these

neuron types are nearly synchronized.

In summary, in juvenile birds, interneurons and PNs of both

subtypes exhibit significant syllable-related rhythmicmodulation

at�10 Hz. For PNs, the size of this modulation was substantially

larger in juvenile birds than in adults (by a factor of 2), and

the difference was marginally significant in a statistical test

of coherency differences (p = 0.06, one-tail permutation test)

(Maris et al., 2007). For interneurons the modulation was not

significantly different in juvenile and adult birds (p = 0.65).

DISCUSSION

In this study, we set out to examine neural coding in HVC and

understand its relation to song structure and timing. We initially
) is shown.

by syllable duration. Red line indicates the syllable onset and blue line indicates

corded from 43 to 54 dph (n = 40 neurons from 17 birds). Horizontal blue line

and minima in this window for shuffled data.

and purple curves, respectively), averaged over all birds. Vertical dashed line

wn.

own (black curve; blue curve, median; shaded region, 95% confidence interval

hown.

and 55 dph (n = 194 neurons from 20 birds). Blue horizontal line indicates the

dow.
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focused on the following two models of HVC coding: (1) contin-

uous-time models in which the bursts of HVC PNs are continu-

ously, and perhaps uniformly, distributed throughout the song;

and (2) theGTEmodel, inwhichPNbursts and interneuronminima

are clustered at specific time points in the song corresponding

to the transitions and extrema of inferredmotor trajectories (Ama-

dor et al., 2013). We examined a large dataset of HVC PNs and

interneurons recorded in five birds with mature songs and found

that our data are largely consistent with the predictions of the

continuous-time model and are inconsistent with those of the

GTE model. However, further analysis revealed aspects of HVC

coding that are not captured by either of these models. These

include a pronounced rhythmic modulation of interneuron firing

rates related to syllable boundaries, a weaker rhythmic modula-

tion of HVC PNs synchronized to that of interneurons, as well as

a significant reduction in HVC activity during LHEs in the song.

An essential feature of the continuous-time models is that

bursting activity extends throughout the songmotif without inter-

ruption. In principle, song could be tiled with a sequence of

bursts placed edge-to-edge, in which case only 100 neurons,

each generating one burst of 10-ms duration, could encode a

song motif of 1-s duration (fold coverage of one). Alternatively,

a large number of bursts might be placed randomly throughout

the song. We have estimated that with a fold coverage of only

ten, such random placement would yield complete coverage in

more than 95% of instances. In contrast, the large number of

PNs in HVC (>16,000 of each class) (Wang et al., 2002; Wild

et al., 2005) corresponds to a fold coverage of over 160, which

would guarantee complete coverage even if burst density were

strongly non-uniform—for example, even if parts of the song

had a factor of ten lower burst density than average. While we

did find evidence of non-uniformity in burst density (57% lower

during LHEs and 33% lower during the latter half of song sylla-

bles), such variations were far weaker than would be required

to produce gaps in burst coverage. This conclusion is further

supported by the nearly complete coverage (median > 96%)

directly measured in our dataset. Finally, we found no evidence

for the dramatic non-uniformities in burst density predicted by

the GTE model; a direct test of burst alignment to discrete tem-

poral events in song, such as syllable onsets, offsets, or GTEs,

revealed no evidence for clustering around these events.

One of the most surprising aspects of the GTE model, as

formulated by Amador et al. (2013), is the proposed alignment

of HVC(RA) bursts to GTEs with near-zero latency. This claimed

alignment would preclude any premotor role for HVC in control-

ling vocal gestures, and it stands in stark contradiction with a

large number of reports documenting a premotor function for

HVC. These include lesion studies demonstrating the necessity

of HVC for adult song (Aronov et al., 2008; Nottebohm et al.,

1976; Simpson and Vicario, 1990) and recordings of HVC neu-

rons showing premotor song-related activity (Ali et al., 2013;

McCasland, 1987; McCasland and Konishi, 1981; Schmidt,

2003). Other studies revealed that disruption of HVC activity

via electrical stimulation affects adult song production (Ashmore

et al., 2005; Vu et al., 1994; Wang et al., 2008) and that acute

manipulation of dynamics in HVC with temperature affects the

temporal structure of the song (Andalman et al., 2011; Goldin

et al., 2013; Long and Fee, 2008).
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In contrast, the premotor role of HVC is a key aspect of the

continuous-time model, in which temporal features of song,

such as onsets, offsets, or acoustic transitions within a syllable,

are each causally driven by a small population of HVC(RA) neu-

rons active at some premotor latency prior to that feature. Based

on an analysis of the covariation of spike timing and song timing,

we found that HVC likely exerts a premotor influence on song af-

ter a delay of �29 ms. This is consistent with the 35-ms latency

determined from a similar analysis of multiunit data (Ali et al.,

2013), and it is reasonably consistent with the sum of a 15-ms

estimated premotor latency from RA to vocal output (Fee

et al., 2004) and the �10-ms antidromic latency from HVC to

RA (Hahnloser et al., 2002).

There are a number of possible explanations for the discrep-

ancy between our findings and those of Amador et al. (2013).

Perhaps the most important difference is the size of the dataset.

The large number of PNs we recorded in each bird (40–136 neu-

rons) reveals a more complete picture of the HVC population ac-

tivity, showing near continuous coverage of bursts, even during

LHEs. Indeed, the �50% lower burst density during LHEs may

have been a contributing factor to the conclusion of Amador

et al. (2013) that bursts occur so rarely during harmonic sounds.

An additional difference between these studies may be the fact

that themajority of neurons in our datasetwere recorded in young

adult birds that had recently completed learning their songs.

HVC(X) neurons, which comprise the majority of neurons in these

datasets, are involved in learning and may exhibit different pat-

ternsof bursting in youngbirds than inolder birds.Recent findings

also indicate a degree of heterogeneity in the connectivity and

function of medial and lateral portions of HVC (Basista et al.,

2014). Thus, some differences in the observed firing patterns

could be explained if the Amador et al. (2013) dataset and our da-

taset included neurons recorded in different regions of HVC.

Causal manipulations of HVCPNswould provide amore direct

test of the continuous-time andGTEmodels thanmeasurements

of burst density. For example, the chain model of sequence gen-

eration in HVC predicts that transiently silencing all HVC(RA) neu-

rons at any time in the chain would terminate the song sequence.

Also, the continuous-time model of HVC(X) neurons in learning

predicts that transiently silencing these neurons at any time

in the song would selectively render the bird incapable of modi-

fying its song at the corresponding time. In contrast, the GTE

model would predict no effect of silencing HVC PNs at times

between GTEs.

We discovered several distinct, yet related, deviations from

uniformity in the activity of HVC(X) neurons that may have an

interesting relation to vocal learning. It is notable that the weaker

HVC(X) activity at the ends of song syllables in our dataset is

accompanied by an increased probability of finding LHEs.

Such variation in song structure is a relatively common feature

of zebra finch song syllables, which frequently begin with com-

plex modulations and end with a downsweep in pitch or an

LHE (Price, 1979). Thus, the increased density of HVC(X) bursts

at times of high song complexity in the early part of song sylla-

bles may reflect the need for a denser representation in time in

the Area X learning circuit. This may be related to the non-uni-

form time basis seen in a sensorimotor learning circuit in weakly

electric fish (Kennedy et al., 2014).



Notably, for HVC(RA) neurons, we found no evidence of sylla-

ble-related modulation of burst density (related to LHEs, to early

or late parts of the syllable, or to rhythmic modulation coherent

with song structure). These observations suggest that HVC(RA)

neurons may have a more uniform distribution in the song

compared to HVC(X) neurons, further confirmation of which

would require recordings from larger numbers of HVC(RA) neu-

rons in individual birds.

The rhythmic modulation of HVC firing rates at�10 Hz in adult

birds may have a developmental origin. The adult song motif,

consisting of three to seven syllables repeated every 0.5 to 1 s,

emerges during learning from an earlier stage of song develop-

ment in which primitive prototype syllables are rhythmically

repeated at 10 Hz (Aronov et al., 2008; Liu et al., 2004; Okubo

et al., 2015; Saar and Mitra, 2008; Tchernichovski et al., 2001).

During this protosyllable stage, individual HVC(X) and HVC(RA)

neurons generate rhythmic bursts locked to protosyllables

(Okubo et al., 2015). Early on, these bursts occur at latencies

predominantly clustered �20 ms prior to syllable onsets. Such

clustering, combined with a rhythmic repetition of protosyllables

at�10 Hz, would explain the observed coherence at�10 Hz be-

tween HVC PN firing rates and song amplitude.

As learning progresses, HVC firing patterns change in a num-

ber of ways, as does the song. The distribution of bursts of both

PN subtypes increasingly spreads out to occupy a greater range

of latencies and form a more uniform sequence of bursts

throughout developing song syllables (Okubo et al., 2015). Indi-

vidual PNs burst less often andmore selectively as new syllables

emerge, until, in adult birds, few individual neurons generate

rhythmic bursts at 10 Hz and the majority of PNs generate a sin-

gle burst during the song motif. Our findings suggest that, ulti-

mately, the population of HVC(X) neurons retains a significant

rhythmicmodulation locked to the underlying song rhythm, while

the HVC(RA) population may not. It is unknown whether these

modulations serve a functional role in song learning that persists

into adulthood or are simply a vestige of an earlier highly rhyth-

mic stage of song development.

Our findings provide insight into the possible role of HVC inter-

neurons during singing. We found that the firing rates of HVC(X)

neurons and interneurons are modulated synchronously, as re-

vealed by the peak at zero lag in the burst-interneuron cross-cor-

relations (Figure 3F) and the nearly identical phase of HVC(X) and

interneuron coherence with song amplitude. These findings may

argue against a view that HVC(X) bursts occur selectively during

synchronized gaps in inhibition (Gibb et al., 2009; Kosche et al.,

2015; Markowitz et al., 2015), and instead they support the view

that inhibition may serve to balance increased activity within the

excitatory network (Jin et al., 2007; Long et al., 2010). While the

relation between HVC(RA) bursts and interneuron firing rates in

our data is less clear, we find no evidence for increased HVC(RA)

bursting at times of reduced interneuron spiking.

The rhythmic modulation of HVC activity may be related to ob-

servations of oscillatory activity in othermotor systems, including

physiological tremor (McAuley andMarsden, 2000), and rhythmic

vocal/motor behaviors, such as lip-smacking in primates (Gha-

zanfar et al., 2013) and babbling in human infants (MacNeilage,

2008). While natural human speech is not strictly rhythmic,

continuous natural speech is characterized by quasi-periodic
modulation in sound amplitude and orofacial movements in the

3- to 8-Hz range, amodulationmost easily detected in the coher-

ence between speech amplitude and neural measures of speech

control (Alexandrou et al., 2016; Ruspantini et al., 2012).

An analysis of rhythmic activity in primate motor cortex during

reaching movements recently has been used to argue that rhyth-

mic firing patterns in motor cortex at �3 Hz result from an oscil-

latory dynamical system in cortex that generates and controls

movements (Churchland et al., 2012). Although we found signif-

icant rhythmic modulation of firing rates in HVC(X) neurons,

which likely correspond to corticostriatal neurons in mammalian

neocortex, we found no evidence of rhythmic modulation of pre-

motor HVC(RA) neurons. Selective lesions of HVC(X) neurons

impair vocal learning but leave song production intact (Scharff

et al., 2000), suggesting that these neurons do not participate

in the on-line control of song vocalizations and consistent with

the hypothesis that that HVC(X) neurons transmit timing informa-

tion to basal ganglia circuits underlying vocal learning (Fee and

Goldberg, 2011). Thus, our findings support the view that rhyth-

mic activity in HVC may play a role in vocal learning, but they do

not support a role for these modulations in adult vocal motor

production.

EXPERIMENTAL PROCEDURES

Please refer to the Supplemental Experimental Procedures for additional

details.

Subjects and Neural Recordings

Electrophysiological recordings were obtained from song control nucleus HVC

in five zebra finches (Taeniopygia guttata) with mature song motifs (age range:

59 to 200 dph). HVC neurons also were recorded in juvenile zebra finches at

earlier stages of song development (age range: 43 to 54 dph; n = 20 birds),

comprising birds in the subsong and protosyllable stages as assessed by

song structure (Okubo et al., 2015). Single-unit recordings of antidromically

identified HVC neurons during singing were carried out using a motorized mi-

crodrive, and PNs were identified by antidromic stimulation from nucleus RA

and Area X, as described elsewhere (Fee and Leonardo, 2001; Okubo et al.,

2014). The care and experimental manipulation of subjects was carried out

in accordance with NIH guidelines and has been reviewed and approved by

the MIT Institutional Animal Care and Use Committee.

Bursts times were calculated from the peri-event time histogram (PETH) of

spikes aligned to the song motif. Spike times were first time-warped by iden-

tifying the onset and offset of each syllable in the motif, calculating the amount

by which each syllable and silent gap must be stretched or compressed to

match a single fiducial rendition of the song motif, and then linearly warping

spike times within each onset-offset and offset-onset window by this amount.

Candidate burst windows were identified as periods when the average firing

rate exceeded a low fixed threshold of 10 Hz. Candidate bursts were accepted

if spikes occurred in the candidate burst window on at least 50% of song ren-

ditions. The time of the burst within the song motif was determined as the

average of the spike times in the burst accumulated over all song renditions

on which the neuron was recorded.

Local minima in the firing rate of HVC interneurons were extracted as

described in the original GTE study (Amador et al., 2013). We generated a

PETH of interneuron activity, whichwas then smoothed using a Savitzky-Golay

filter with window size 10 ms and order 3. The minima of the smoothed PETH

were found with a 20-ms sliding window.

GTE Analysis

GTE times were extracted from the songs using procedures described in Ama-

dor et al. (2013) (Figures S1F–S1I). The approach is to use a dynamical model

of the vocal organ (the syrinx) to infer the trajectory of two control parameters
Neuron 90, 877–892, May 18, 2016 889



—air sac pressure and labial tension (Amador and Mindlin, 2008; Perl et al.,

2011). Continuous segments of control parameters are called gestures, and

local maxima in either of the two control parameters within a gesture are called

extrema. These, together with the beginning and end of the gesture, are iden-

tified as GTEs. The GTE analyses were carried out using custom MATLAB

code by authors who did not have access to the neural data. A second set

of GTEs was extracted using an automated method (Boari et al., 2015).

Coverage Analysis

Each HVC spike in the burst window was assumed to exert a postsynaptic

effect lasting 5 ms (Garst-Orozco et al., 2014) and was replaced with a 5-ms

postsynaptic square pulse. For each burst, a region of the song was consid-

ered covered if, across recorded renditions, at least three post-synaptic pulses

overlapped in time. This procedure yielded a small patch of time covered by

the burst. The covered fraction was computed as the total covered duration

divided by the duration of the motif (including flanking regions). The covered

fraction predicted under the uniform and GTE models was determined as

described in the Supplemental Experimental Procedures.

Cross-Correlation Analysis

Cross-correlations between two series of event times, such as GTE times

and burst times, were carried out using point-process Pearson normalized

cross-covariances (Gabbiani and Cox, 2010), with slight modifications to allow

for the possibility of bursts occurring simultaneously over the population of

neurons. For display and testing purposes, this point process cross-correla-

tion was binned in a sliding 5-ms bin with 1-ms steps. All p values reported

are two sided, unless otherwise specified, and do not assume a symmetric

distribution of the test statistic under each model.

For analyses showing modulation of firing rates around discrete events

(burst times in Figures 3F and 3G or syllable onsets/offsets in Figures 7

and 8), the relative time between individual spikes and each discrete

event was determined and binned with 1-ms bins. The resulting PETHs were

smoothed with a 20-ms sliding window and normalized to display average

firing rate in each bin. The precise temporal locations of peaks and minima

in PETHs were extracted by fitting a quadratic function to a 30-ms window

centered at the global maximum/minimum. SE was assessed by bootstrap

methods. Significance of PETH maxima (or minima) was determined using

Monte Carlo methods to estimate the 95% confidence interval of maxima (or

minima) over the entire 100-ms time window for circularly shuffled spike trains.

To combine results across birds, all neurons were given equal weight.

Ripley’s Clustering Analyses

To determine whether there is a clustering of bursts, minima, and GTE times,

we used Ripley’s-L analysis to detect significantly non-uniform clustering of

points (Dixon, 2002). In brief, Ripley’s-L finds the difference between the ex-

pected number of points observed within a time interval, t, around each point,

and the expected number for randomly arranged points (Poisson distributed).

To determine what window size (t) resulted in optimal discriminability between

the uniform and GTE models, we computed the d’ discriminability metric be-

tween the distributions of the L-statistic in these two models. The resulting

curve of d’ as a function of t had a peak at 8 ms, and this is the value of t

we used for all statistical comparisons of the data with these models.

Spectral Analysis of Song Amplitude and Spike Trains

Song amplitude was calculated as previously described (Aronov et al., 2011).

Briefly, the microphone signal was bandpass filtered, rectified, and smoothed.

The spectral analysis of the song amplitude and spike times was carried out

using code from the Chronux package (Mitra and Bokil, 2007). Quantities

calculated include power spectral density, cross-power spectral density,

and coherency. For adult data, spectral quantities were computed for time

series extending over the entire duration of the motif. For juvenile data, song

bouts were divided into non-overlapping segments of 750-ms duration.

Cross-spectrum was computed by adding coherently across neurons and

birds. Significance of coherency was assessed by shuffling spike times over

10,000 Monte Carlo trials. Rhythmicity of interneurons recorded in juvenile

birds was assessed by determining if there was a significant peak in the spike

spectrum in the range of 4–15 Hz and further requiring that the global
890 Neuron 90, 877–892, May 18, 2016
maximum of spike spectrum occur within this range. To combine spectral

analysis results across birds, all neurons were averaged with equal weight.
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