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Abstract

Over the past four decades songbirds have become a widely 
used model organism for neuroscientists studying complex 
sequential behaviors and sensory-guided motor learning. 
Like human babies, young songbirds learn many of the sounds 
they use for communication by imitating adults. This remark-
able behavior emerges as a product of genetic predispositions 
and specifi c individual experiences. Research on different 
aspects of this behavior has elucidated key principles that 
may underlie vertebrate motor learning and motor perfor-
mance in general, including (1) the mechanisms by which 
neural circuits generate sequential behaviors, (2) the exis-
tence of specialized neuronal circuits for the generation of 
exploratory variability, (3) the importance of basal ganglia–
forebrain circuits for learning sequentially patterned behav-
iors, including speech and language, and (4) the existence of 
genetic toolkits that may have been coopted multiple times 
during evolution to play a role in learned vocal communica-
tion, such as the transcription factor FoxP2 and its molecular 
targets. This review presents new techniques, experiments, 
and fi ndings in areas where songbirds have made signifi cant 
contributions toward understanding of some of the most fun-
damental questions in neuroscience.

Key Words: Area X; basal ganglia–forebrain circuit; song-
bird; transcription factor FOXP2; vocal learning; zebra fi nch 
(Taeniopygia guttata)

Introduction

T he songbird has emerged as a tractable model system 
in which to pursue answers to some of the most funda-
mental questions in neuroscience. How does the brain 

generate complex behaviors? How do humans learn these 
behaviors by observing others? After making an error, by 

what mechanism do the consequences of that error cause 
someone to avoid that action in the future? Similarly, how 
does the brain reinforce the thoughts or actions that lead to a 
positive outcome? These are fundamental questions in neu-
roscience because the ability to learn by imitation and im-
prove future actions based on past outcomes underlies much 
of what humans do. Furthermore, diseases of the basal gan-
glia and cortical circuitry that underlie these functions have 
devastating motor and cognitive consequences, highlighting 
the importance of understanding the biophysical and circuit 
mechanisms that underlie the learning and generation of 
complex behaviors (Albin and Mink 2006; Brown et al. 
2003; Everitt and Robbins 2005; Graybiel and Rauch 2000; 
Leckman and Riddle 2000; Müller et al. 1997; Voon et al. 
2007).

One songbird in particular, the zebra fi nch (Taeniopygia 
guttata), has been the focus of much research because of its 
proclivity to sing and breed in captivity and its rapid matura-
tion. The song of an adult male zebra fi nch is a stereotyped 
series of acoustic signals with structure and modulation over 
a wide range of time scales, from milliseconds to several 
seconds (Figure 1A). The adult zebra fi nch song comprises a 
repeated sequence of sounds, called a motif, that lasts about 
a second (Immelmann 1969). The motif is composed of 
shorter bursts of sound called syllables, which often contain 
sequences of simpler acoustic elements called notes (Price 
1979). 

The specifi c acoustic pattern produced by a songbird is 
learned in much the same way that humans acquire a number 
of motor skills (Thorpe 1958). In fact, vocal learning in 
songbirds has attracted a great deal of attention in part be-
cause of its similarity to speech learning in humans (Doupe 
and Kuhl 1999; Marler 1970). Song learning proceeds 
through a series of stages (Figure 1B), beginning with a pri-
marily sensory phase in which the young bird listens to a 
tutor (usually its father) vocalize, often without producing 
any song-like vocalizations itself. The bird uses this period 
to memorize a representation of the tutor song, forming a 
neural “template” of the song (Konishi 1965). After the sen-
sory learning stage, the juvenile bird enters the “sensorimo-
tor” stage and begins to sing; over the course of a couple of 
months it uses auditory feedback to refi ne its vocalizations 
to match the template. The earliest babbling vocalizations, 
known as “subsong,” are highly noisy, variable, and unstruc-
tured (Figure 1C) (Immelmann 1969). Within a week or so 
the song enters a stage known as “plastic song,” in which the 
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vocalizations acquire syllables that, while still highly vari-
able, are identifi able as repeated vocal patterns and gradually 
come to dominate the song as the variability decreases. At 
the onset of sexual maturity, the variability is substantially 
eliminated—a process called crystallization—and the young 
bird begins to produce a normal adult song, which can be a 
striking imitation of the tutor song (Figure 1C). Thus, the 
gradual reduction of song variability from early subsong 
to adult song, together with the gradual increase in imita-
tion quality, is an integral aspect of vocal learning in the 
songbird. 

While all songbird species investigated so far go through 
a subsong and a plastic song phase before reaching adult 
song, the timing and learning strategies can differ substan-
tially (Marler 1997). In many seasonal breeders such as the 

nightingale an auditory memorization phase precedes senso-
rimotor learning by months (Hultsch and Todt 2004), whereas 
in opportunistic breeders such as the zebra fi nch, auditory 
and motor learning overlap (Roper and Zann 2006). How 
much and when the developing “soundscape” is affected by 
auditory experience also varies considerably among species. 
Unlike children, some songbird species can develop a large 
repertoire of species-typical adult song elements even with-
out hearing a tutor song, but the postmigration selection 
of the fi nal song types (“action-based learning”) is based 
on exposure to the songs of neighboring birds (Liu and 
Nottebohm 2007). In other species, like the zebra fi nch, 
“innately” produced sounds are gradually shaped toward a 
memorized tutor song throughout development (“instruction-
based learning”) (Tchernichovski et al. 2001). 

Birdsong as a Model for the Generation of 
Complex Behavioral Sequences

The brain areas associated with song production and song 
learning have, to a large extent, been identifi ed and exist in 
all songbird species studied (Wild 1997) (Figure 2). The 
muscles of the vocal organ, or syrinx, are innervated by a 
subset of motor neurons of the hypoglossal nucleus (the tra-
cheosyringeal portion of the nucleus of the twelfth nerve, 
nXIIts) (Vicario and Nottebohm 1988; Wild and Arends 
1987). A primary projection to the nXIIts descends from 
neurons in a forebrain nucleus RA1 (robust nucleus of the 
arcopallium) (Nottebohm et al. 1982; Wild 1993), which is 
thought to be analogous to the mammalian layer V pyrami-
dal tract neurons of motor cortex that project directly to spi-
nal motor neurons (Karten 1991). Nucleus RA receives 
motor-related projections from another cortical analogue, 
nucleus HVC1 (Bottjer et al. 1989; Nottebohm et al. 1976), 
which in turn receives direct input from several brain areas, 
including thalamic nucleus uvaeformis (Uva) (Nottebohm 
et al. 1982; Williams and Vicario 1993). 

Nuclei HVC and RA are involved in the motor control of 
song in a hierarchical manner (Vu et al. 1994). Recordings in 
singing zebra fi nches have shown that HVC neurons that 
project to RA transmit an extremely sparse pattern of bursts: 
each RA-projecting HVC (HVC(RA)) neuron generates a sin-
gle highly stereotyped burst of approximately 6 ms duration 
at one specifi c time in the song (Figure 3A) (Hahnloser et al. 
2002). During singing, RA neurons generate a complex se-
quence of high-frequency bursts of spikes, the pattern of 
which is precisely reproduced each time the bird sings its 
song motif (Yu and Margoliash 1996). During a motif, each 
RA neuron produces a fairly unique pattern of roughly 12 
bursts, each lasting ~10 ms (Leonardo and Fee 2005). It is 
not yet known precisely how these complex sequences of 
bursts are related to vocal output—for example, how the 

1Abbreviations used in this article: AFP, anterior forebrain pathway; DAF, 
disruptive auditory feedback; DLM, medial portion of the dorsolateral 
thalamus; HVC, used as the proper name; LMAN, lateral magnocellular 
nucleus of the anterior nidopallium; RA, robust nucleus of the arcopallium

Figure 1 Description of zebra fi nch song and song learning. (A) 
Song spectrogram of an adult male single zebra fi nch. Letters de-
note syllables; a repeated sequence of syllables is called a motif. A 
bout of singing consists of a sequence of motifs preceded by intro-
ductory notes. (B) Timeline of song learning in zebra fi nches. Dur-
ing the sensory learning phase, the bird acquires a song “template” 
by listening to a tutor. During the sensorimotor phase the bird prac-
tices its song and, using auditory feedback, makes its own song 
match that of the tutor. (C) Song spectrograms from a juvenile ze-
bra fi nch at three stages of learning. The spectrogram of this bird’s 
tutor is shown in panel (A). From 30 to 45 days posthatch (dph) 
young zebra fi nches sing “subsong,” which has little or no repeated 
acoustic structure. Older juveniles (45-80 dph) sing “plastic song,” 
which is variable but has some identifi able repeated structure. Adult 
song (>80-90 dph) has little variability and clearly identifi able syl-
lables and motifs. This bird made a good imitation of most of the 
tutor syllables and sequence but failed to copy syllable “e.” Such 
variations in the imitation process are common. 
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telencephalic orchestration of singing interfaces with brain-
stem motor and respiratory circuits downstream from RA. 
These peripheral mechanisms are an area of active research 
(Riede and Goller 2010; Sturdy et al. 2003) and are part of 
an ongoing effort to study the convergent mechanisms that 
control the production of both human speech and birdsong 
(Jarvis 2004).

A Simple Model of Vocal Sequence 
Generation in Adult Birds

Based on the observations that RA-projecting HVC neurons 
generate a single burst of spikes during the song motif and 
that different neurons appear to burst at many different times 
in the motif, it has been hypothesized that these neurons gen-
erate a continuous sequence of activity over time (Fee et al. 
2004; Kozhevnikov and Fee 2007). In other words, at each 
moment in the song, there is a small ensemble of HVC(RA) 
neurons active at that time and only at that time (Figure 3B), 
and each ensemble transiently activates (for ~10 ms) a sub-
set of RA neurons determined by the synaptic connections of 
HVC neurons in RA (Leonardo and Fee 2005). Further, in 
this model the vector of muscle activities, and thus the con-
fi guration of the vocal organ, is determined by the conver-
gent input from RA neurons on a short time scale, of about 

10 to 20 ms. The view that RA neurons may simply contrib-
ute transiently, with some effective weight, to the activity of 
vocal muscles is consistent with some models of cortical 
control of arm movement in primates (Fetz and Cheney 
1980; Todorov 2000). 

A number of studies suggest that the timing of the song 
is controlled on a millisecond-by-millisecond basis by a 
wave, or chain, of activity that propagates sparsely through 
HVC neurons. This hypothesis is supported by an analysis of 
timing variability during natural singing (Glaze and Troyer 
2007) as well as experiments in which circuit dynamics in 
HVC were manipulated to observe the effect on song timing. 
Specifi cally, bilateral cooling of HVC during singing by use 
of a thermoelectric heat pump (a Peltier device) revealed that 
all aspects of song timing—duration of song syllables, inter-
val between syllable onsets, and interval between motif 
onsets—are slowed by approximately 3% per degree Celsius 
of HVC cooling (Figure 3C) (Long and Fee 2008). In contrast, 
bilateral cooling in RA had no effect on song timing. Thus, 
in this model, song timing is controlled by propagation 
of activity through a chain in HVC; the generic sequential 
activation of this HVC chain is translated, by the HVC 
connections in RA, into a specifi c precise sequence of vocal 
confi gurations. 

Birdsong as a Model for Motor Learning

In addition to its inputs from HVC, the premotor nucleus RA 
also receives synaptic input from nucleus LMAN1 (lateral 
magnocellular nucleus of the anterior nidopallium), which, 
like HVC and RA, is contained within the pallium, a region 
of the avian brain analogous to mammalian cortex (Reiner 
et al. 2004b). LMAN is the output of a circuit known as the 
anterior forebrain pathway (AFP1), which includes a thal-
amic nucleus DLM1 (medial portion of the dorsolateral thal-
amus) and a basal ganglia homologue Area X, which in turn 
receives input from LMAN and HVC (Figure 2) (Okuhata 
and Saito 1987; Reiner et al. 2004a). Synaptic inputs to RA 
from LMAN and HVC are glutamatergic. However, while 
HVC inputs are mediated by a mixture of AMPA (α-amino-
3-hydroxyl-5-methyl-4-isoxazole-propionate) and NMDA 
(N-methyl-D-aspartic acid)-type glutamate receptors (Stark 
et al. 1999), LMAN inputs are mediated primarily by NMDA 
receptors, as evidenced by their near complete blockade by 
AP5 (2-amino-5-phosphonopentanoic acid) (Mooney 1992; 
Mooney and Konishi 1991; Ölveczky et al. 2005; Stark and 
Perkel 1999).

Lesions or pharmacological manipulation of LMAN and 
Area X disrupt song learning in juveniles, but, unlike lesions 
to the motor pathway, have little effect on singing ability in 
adults (Basham et al. 1996; Bottjer et al. 1984; Scharff and 
Nottebohm 1991; Sohrabji et al. 1990). However, studies 
have shown that lesions in these two areas have strikingly 
different effects on song learning. Permanent bilateral le-
sions of LMAN result in an impoverished adult song that shows 
poor imitation of the tutor, a small number of abnormally 

Figure 2 Avian brain nuclei related to song control. The motor 
pathway is necessary for song production and the anterior forebrain 
pathway (AFP) is necessary for song learning. In the motor path-
way, the vocal organ, or syrinx, is innervated by motor neurons in 
the brainstem (nucleus nXIIts). Motor neurons are innervated by a 
forebrain nucleus RA (analogous to descending projections from 
layer V of cortex; Karten 1991), which receives premotor input 
from nucleus HVC, which in turn receives afferents from the thal-
amic nucleus Uva. Nucleus RA also receives input from nucleus 
LMAN, the output nucleus of the AFP. The AFP is a cortical-basal 
ganglia loop that consists of LMAN, basal ganglia homologue Area 
X, and the pallido-recipient thalamic nucleus DLM. Note that RA, 
HVC, and LMAN are in the avian pallium, which is evolutionarily 
and developmentally related to mammalian cortex (Reiner et al. 
2005). DLM, medial portion of the dorsolateral thalamic nucleus; 
LMAN, lateral magnocellular nucleus of the anterior nidopallium; 
nXIIts, tracheosyringeal portion of the twelfth nerve; RA, robust 
nucleus of the arcopallium; Uva, nucleus uvaeformis; VTA/SNc; 
ventral tegmental area/substantial nigra pars compacta. 
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simple syllables, and, in the juvenile song, premature crystal-
lization (loss of variability) (Bottjer et al. 1984; Scharff and 
Nottebohm 1991; Sohrabji et al. 1990). Permanent lesions of 
Area X also result in a poor imitation of the tutor song, but 
in contrast to LMAN lesions, the song does not crystallize, 
syllable morphology remains abnormal, and the adult bird 
retains a large number of syllables with abnormally high se-
quence variability (Scharff and Nottebohm 1991). 

Recent advances in understanding of avian functional neu-
roanatomy have revealed the extent to which Area X and its 
interactions with cortical-like HVC and LMAN are homolo-
gous to the mammalian basal ganglia (BG1) and its interaction 
with cortex (Figure 4). Area X and the mammalian BG are 

both topographically organized into cortico-striato-pallidal-
thalamocortical loops that share striking similarities in 
their neurochemistry, cytoarchitecture, and synaptic connec-
tivity (Alexander et al. 1986; Doupe et al. 2005; Luo and Perkel 
2001). Furthermore, as shown in Figure 4, four major cell 
classes in the mammalian striatum are also present in Area X: 
(1) medium spiny neurons (MSNs) that express either enkeph-
alin or substance P, (2) fast-spiking (FS) interneurons, (3) cho-
linergic tonically active neurons (TAN), and (4) low-threshold 
spiking (LTS) interneurons. Furthermore, these striatal neuron 
types share essential features of their spiking activity with their 
mammalian counterparts, both in vitro (Farries and Perkel 
2002) and in the behaving animal (Goldberg and Fee 2010). 

Figure 3 Mechanisms of sequence generation in the adult song motor pathway. (A) Spike raster plot of 8 antidromically identifi ed RA-
projecting HVC neurons recorded sequentially in a single singing zebra fi nch. Spikes from 10 sequential song motifs are shown for each 
neuron. Each neuron generates exactly one burst of ~6 ms duration during each rendition of the song motif (from Hahnloser et al. 2002). (B) 
Illustration of the hypothesis that RA-projecting HVC (HVC(RA)) neurons burst and activate each other sequentially in groups of 100 to 200 
coactive neurons. Each group of HVC neurons drives a distinct ensemble of RA neurons to burst. The neurons converge with some effective 
weight at the level of the motor neurons to activate syringeal muscles. (C) Bilateral cooling of HVC with a thermoelectric device results in a 
slowing of song at all time scales (subsyllabic structure, intervals between syllable onsets, and intervals between motif onsets). This result 
suggests that the biophysical dynamics that underlie all of these time scales may reside in HVC, and rules out the possibility that any of the 
time scales are autonomously controlled by dynamics outside HVC. Adapted from Long and Fee (2008). 
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Area X also contains two pallidal-like cell types: thalamus-
projecting neurons densely innervated by the striatal-
like spiny neurons (Carrillo and Doupe 2004; Farries et al. 
2005b), similar to the classical “direct” pathway of the BG; 
and locally projecting pallidal neurons, similar to the classi-
cal “indirect” pathway. The singing-related fi ring patterns of 
these two cell classes are similar to those of neurons ob-
served in the internal and external pallidal segments (GPi 
and GPe, “direct” and “indirect” pathways, respectively) of 
the behaving primate (Goldberg et al. 2010). This detailed 
structural and functional homology in such phylogenetically 
distinct groups as songbirds and primates hints at a highly 
conserved underlying BG circuit function in the vertebrate 
brain (Reiner 2009). Understanding the relation between 
songbird and mammalian BG is an important area of ongo-
ing research (Gale and Perkel 2010a).

Just as Area X is necessary for vocal learning in the song-
bird, the mammalian BG is involved in motor control and 
learning (Graybiel 1994). Impairments of BG function affect 
serial processing and sequential behaviors, including speech 
and language, and are seen in Parkinson’s disease, schizophre-
nia, obsessive-compulsive disorder, Huntington’s, Tourette’s, 
and the tardive syndromes (Brown et al. 2003; Müller et al. 
1997). Since Area X and the mammalian BG circuit share de-
sign features and functional signifi cance, the neural mecha-
nisms of song learning are likely to be directly relevant to both 
the mammalian BG and human disease (Doupe et al. 2005).

Hypotheses for the Role of the AFP 
in Learning

The importance of the AFP in vocal plasticity in the songbird 
has led to a number of hypotheses about the specifi c role this 
circuit plays in learning (Troyer and Bottjer 2001). These 
hypotheses have focused on three major functions that are 
thought to be necessary for song learning: (1) the compari-
son of auditory feedback during singing with the memory of 
the tutor song, (2) the generation of motor variability that 
allows the young bird to learn by exploring vocal space, and 
(3) the computation of an error signal or instructive signal 
that is transmitted to the motor pathway to drive learning. 

Auditory Comparison

One of the most infl uential models of the AFP is that this 
circuit is involved in the comparison between auditory feed-
back during singing and the memorized tutor song, or tem-
plate (Troyer and Bottjer 2001). The strongest evidence in 
favor of this AFP comparison hypothesis is that neurons 
throughout the AFP exhibit auditory responses in anesthe-
tized, sleeping, and awake birds (Dave and Margoliash 2000; 
Hessler and Doupe 1999; Katz and Gurney 1981; Margoliash 
1986; McCasland and Konishi 1981). Auditory responses in 
Area X and LMAN probably arise via the projection to Area 
X from HVC (Doupe 1997; Prather et al. 2008, 2009; The-
unissen and Doupe 1998), which in turn receives auditory 
inputs from several auditory centers (Coleman and Mooney 
2004; Coleman et al. 2007; Fortune and Margoliash 1995). 

Although this idea remains infl uential, there is some evi-
dence against it. If the AFP is involved in evaluating song to 
determine vocal errors, it might be expected that AFP neu-
rons would be auditory responsive during singing. This hy-
pothesis has been examined by comparing the song-related 
neural activity and activity-dependent gene expression in 
LMAN and HVC in normal and deafened birds (Hessler and 
Doupe 1999; Jarvis and Nottebohm 1997; Kimpo and Doupe 
1997) and examining the responses of these areas to the 
playback of disruptive auditory feedback (DAF1) during 
singing (Kozhevnikov and Fee 2007; Leonardo 2004; Prather 
et al. 2008). Although the disruption of auditory feedback in 
many of these experiments was suffi cient to induce slow 
degradation of song structure over the course of days or 

Figure 4 Comparison of mammalian and avian basal ganglia–
forebrain circuitry. The avian Area X is homologous to the mam-
malian basal ganglia (BG) and includes striatal and pallidal cell 
types. The BG forms part of a highly conserved anatomical loop 
through several stations, from cortex to the BG (striatum and pal-
lidum), then to thalamus and back to cortex. Similar loops are seen 
in the songbird: the cortical analogue nucleus LMAN projects to 
Area X, the pallidal components of which project to the thalamic 
nucleus DLM, which projects back to LMAN. Like the mamma-
lian BG, Area X contains medium spiny neurons (MSN), fast-spiking 
interneurons (FS), tonically active neurons (TAN), and low-threshold 
spikers (LTS). Area X also contains GPi-like pallidal neurons 
that project to the thalamus, and GPe-like pallidal neurons that 
project within Area X. Note that there are some differences 
between Area X and mammalian BG. For example, Area X does 
not appear to contain, or interact with, neurons homologous to 
those of the mammalian subthalamic nucleus (STN; not shown), 
nor does Area X have a direct projection to midbrain dopamin-
ergic areas (not shown). DLM, medial portion of the dorsolat-
eral thalamus; GPe, external globus pallidus; GPi, internal globus 
pallidus; LMAN, lateral magnocellular nucleus of the anterior 
nidopallium. 
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weeks, there was no evidence of auditory sensitivity in HVC or 
in the AFP during singing. A recent study reported auditory 
sensitivity to DAF during singing in HVC in Bengalese 
fi nches (Lonchura striata domestica; Sakata et al. 2008). 
However, in these experiments the DAF stimulus was of suf-
fi cient intensity to induce acute motor effects on song tem-
poral structure. Thus the observed auditory responses could 
be related to fast auditory-motor interactions (Sakata and 
Brainard 2006; Yamada and Okanoya 2003) rather than to 
error signals subserving vocal learning. 

Of course, an alternative possibility is that the auditory 
processing related to song template storage and comparison 
may occur in the extensive network of auditory regions in 
the songbird forebrain (Mello et al. 2004). This view is gain-
ing support from a number of directions. Recent experiments 
have demonstrated that pharmacological blockade of protein 
synthesis in some forebrain auditory areas during tutor expo-
sure leads to a poor imitation of the tutor song (London and 
Clayton 2008). More recent research has used immediate 
early gene expression to show a selective response in these 
brain areas to tutor song (Gobes et al. 2010). Finally, single-
unit recordings in singing zebra fi nches have revealed the 
existence of auditory forebrain neurons that do not have sim-
ple auditory responses but instead show strong premotor-
related activity and responses to DAF only during singing 
(Keller and Hahnloser 2009). These neurons exhibit a degree 
of auditory-motor convergence that might be expected in cir-
cuits carrying out online template-comparison. 

Altogether, these studies suggest that the auditory fore-
brain, rather than the AFP, may play the central role in song 
template storage and performance evaluation. 

Vocal Exploration in Juvenile Songbirds 

The reinforcement learning (RL) model of basal ganglia func-
tion (Sutton and Barto 1998) proposes a learning strategy remi-
niscent of a trial-and-error search (Doya and Sejnowski 1995, 
1998). In this model, an animal experiments with its motor 
repertoire and receives sensory-driven evaluative feedback that 
reinforces action sequences that improve output. The combina-
tion of randomness and selection can result in extremely 
sophisticated behaviors and has been successfully used to 
engineer motor control in robots and to model BG-dependent 
sequence learning in primates (Beiser and Houk 1998; 
Contreras-Vidal and Schultz 1999; Gutnisky and Zanutto 
2004; Suri and Schultz 1998, 1999). 

The fact that songbirds require auditory feedback during 
all stages of song learning to properly master their songs by 
imitation is well established (Konishi 1965) and is consistent 
with the RL view of vocal learning. Likewise, trial-to-trial 
variability during the sensorimotor phase may refl ect imple-
mentation of the second requirement of RL, vocal “explora-
tion” (Doya and Sejnowski 1995), which allows the bird to 
sample a variety of outputs, increasing the chance of produc-
ing template-matched vocalizations. Indeed, studies have 
shown that an artifi cially imposed association between natural 

song variations and vocal error drives plastic changes in song 
in both adult and juvenile birds (Andalman and Fee 2009; 
Tumer and Brainard 2007). 

The fi rst explicit suggestion that the AFP drives vocal 
exploration came from early modeling work (Doya and 
Sejnowski 1995) and was based on studies of the effects of 
LMAN and Area X lesions on song and song learning (Scharff 
and Nottebohm 1991). Since then, a number of studies have 
fairly fi rmly established that the AFP, in particular nucleus 
LMAN, contributes to the generation of vocal variability in all 
stages of vocal development. Lesion and gene expression stud-
ies have shown that LMAN is involved in the acoustic and even 
behavioral variability of adult birds (Kao et al. 2005; Liu and 
Nottebohm 2005); bilateral lesions or inactivation of LMAN in 
juvenile birds largely abolish variability during learning (Fig-
ure 5) (Ölveczky et al. 2005; Scharff and Nottebohm 1991). 
Furthermore, the inactivation of NMDA-type glutamate recep-
tors in RA largely eliminates song variability, suggesting that 
LMAN generates variability by driving RA neurons via gluta-
matergic synaptic input (Ölveczky et al. 2005). 

Based on a number of observations, LMAN also appears 
to play an active premotor role in generating subsong vocal-
izations in young juvenile zebra fi nches (Aronov et al. 2008). 
Complete bilateral lesions of HVC have little effect on these 
early vocalizations, whereas bilateral lesions or inactivation 
of LMAN in the subsong stage render the birds unable to 
sing. In addition, single-unit recordings of RA-projecting 
LMAN neurons in singing juvenile birds reveal that most of 
these neurons exhibit a strong premotor correlation with 
subsong acoustic structure, producing a signifi cant increase 
in spike rate 10 to 50 ms before the onsets or offsets of sub-
song syllables. These fi ndings, together with the observation 
that LMAN stimulation can produce immediate perturba-
tions of vocal output (Kao et al. 2005), suggest that LMAN, 
not HVC, plays a predominant premotor role in the genera-
tion of exploratory babbling (Aronov et al. 2008). 

Thus we have a view in which the AFP plays an essential 
role in vocal exploration throughout the ontogeny of song 
learning. Early in the subsong stage, the vocalizations are 
dominated by the LMAN input to RA, whereas HVC inputs 
appear to have little effect on vocal output. During the plastic 
song stage, HVC begins to contribute signifi cantly, such that 
HVC and LMAN inputs play a more balanced role. In this 
stage, HVC produces some repeated or structured vocal ele-
ments, while LMAN still contributes to the generation of 
variability. Finally, in the adult zebra fi nch, the stereotyped 
input from HVC predominates while the noisy input from 
LMAN is greatly diminished, resulting in highly stereotyped 
sequences. However, LMAN continues to contribute vari-
ability in adult birds, which may be important for the main-
tenance of adult song or for ethological reasons (Kao et al. 
2005; Liu et al. 2005). This model suggests a gradual trans-
fer, throughout development, of the premotor control of 
singing from the AFP to the classical (HVC → RA) motor 
pathway. It seems likely that this process can be reversed and 
repeated in birds for which song variability is seasonal, such 
as canaries (Serinus canaria), whose song is highly stereotyped 
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during the mating season and more variable the rest of the 
year (Nottebohm et al. 1990).

A number of questions arise regarding the mechanisms 
by which the AFP generates variability in vocal output. For 
example, how does the activity in LMAN modulate the fi r-
ing patterns in nucleus RA, leading to vocal variability? 
What causes the developmental reduction of variability? 
Which are the AFP nuclei involved in generating variabil-
ity? Does the variability in LMAN fi ring patterns arise from 
circuitry intrinsic to LMAN, or is it driven by afferent in-
puts? In the latter case, variability could arise within the 

circuitry of DLM or Area X, or could involve the entire 
LMAN → Area X → DLM loop. Localization of the cir-
cuitry that generates variability will make it possible to 
study models of the biophysics and circuit dynamics that 
lead to random or chaotic fi ring patterns in neural circuits 
(van Vreeswijk and Sompolinsky 1996). 

The existence of a specialized circuit in the brain that 
generates variability is a fascinating aspect of the song sys-
tem and may have broad implications for understanding the 
origin of variability in neuronal fi ring patterns, the origin 
of behavioral variability that underlies learning, and the 

Figure 5 Effect of LMAN (lateral magnocellular nucleus of the anterior nidopallium) lesions on song variability. Elimination of LMAN 
signifi cantly reduces vocal exploration, making the otherwise variable song of the juvenile zebra fi nch highly stereotyped. (A) Spectrograms 
of the songs of a juvenile zebra fi nch (42 days posthatch, dph) immediately before (left) and 1 day after (right) bilateral electrolytic lesion of 
LMAN (Scharff and Nottebohm 1991). Colored boxes indicate individual identifi able syllables. (B) Spectral derivatives of the songs of a 
juvenile zebra fi nch (57 dph) immediately before and after injection of tetrodotoxin (TTX) in LMAN (Ölveczky et al. 2005). In contrast to 
the normally large variability in sequence and the acoustic structure of plastic song syllables (left panels in A and B), a reduction of sequence 
and acoustic variability was manifest both 1 day after electrolytic lesion and immediately after TTX infusions (right panels in A and B), reveal-
ing a highly stereotyped song produced by the motor pathway. Spectral derivatives based on the method of Tchernichovski et al. (2000). 
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variability inherent in higher cognitive processes such as 
play and creativity. 

Error-Related Signaling 

The reinforcement learning framework of vocal learning re-
quires that variability in the motor output be accompanied by 
a mechanism that evaluates the vocal performance and pro-
duces plastic changes in the vocal output (Sutton and Schultz 
1998). In fact, one of the earliest hypotheses for the function 
of the AFP is that it may provide an instructive signal that 
drives plasticity in the motor pathway (Bottjer et al. 1984). 
While it has been long known that lesions of the AFP pro-
duce severe defi cits in vocal learning (Bottjer et al. 1984; 
Brainard and Doupe 2000; Scharff and Nottebohm 1991; 
Sohrabji et al. 1990), conclusive evidence for error-related 
signals in the AFP has been elusive. 

The ability to experimentally manipulate the dynamics 
of vocal learning has enabled several advances in the study 
of vocal learning in songbirds. Because song learning nor-
mally occurs slowly, it can be diffi cult to correlate small 
daily changes in the song with electrophysiological record-
ings or experimental manipulations of the neural circuitry 
that are typically done on a time scale of hours. Two broad 
approaches that have been useful to study vocal learning in-
volve the rapid induction of a song template (Tchernichovski 
et al. 2001) and the presentation of DAF (Leonardo and 
Konishi 1999). More recently, several laboratories have de-
veloped the use of conditionally presented DAF to induce 
motor-dependent vocal “errors” in real time during singing. 
If the presence of these “errors” is conditional on one vocal 
parameter (say, the pitch of a harmonic stack), the bird rap-
idly learns to alter the pitch of that syllable to avoid the feed-
back “error” (Andalman and Fee 2009; Tumer and Brainard 
2007). Learned vocal changes in the presence of conditional 
auditory feedback can be rapid, such that the bird nearly 
completely avoids the feedback error within several hours of 
singing (Figure 6). Interestingly, the induced pitch changes 
were specifi c to the targeted song syllable and did not gener-
alize to other syllables (Tumer and Brainard 2007), suggest-
ing a strong temporal specifi city to the learning process.

Conditional auditory feedback was recently used to di-
rectly address the question of whether LMAN in juvenile ze-
bra fi nches does indeed produce a direct premotor contribution 
to the vocal output that biases the song away from vocal errors 
(Andalman and Fee 2009). The approach in these experiments 
was to transiently inactivate LMAN at the end of several hours 
of feedback-driven learning and look for evidence of “regres-
sion,” or “unlearning.” If learned changes in song are due to 
plasticity in the motor pathway, then LMAN inactivation 
would reduce variability but would not produce any immedi-
ate regression. In contrast, if LMAN makes a direct premotor 
contribution to vocal output that biases the output in the 
learned direction, then LMAN inactivation should result in a 
regression of the learned changes. The experiments showed 
that LMAN inactivation at the end of a day of learning pro-

duced an immediate regression of the day’s learned changes 
in song pitch, suggesting a substantial contribution of AFP-
driven bias to vocal learning (Figure 7). The presence of AFP 
bias is further suggested by small but signifi cant correlations 
in the motif-aligned fi ring pattern of LMAN neurons (Kao 
et al. 2008; Leonardo 2004; Ölveczky et al. 2005).

What is the role of AFP bias in the long-term changes in 
the motor pathway that underlie song learning? By updating 
each day the pitch threshold for which noise is played back, 
it is possible to produce several sequential days of learning 
in which learned pitch changes accumulated from day to day 
(Tumer and Brainard 2007). LMAN inactivation experi-
ments demonstrated that these accumulated changes were 
not entirely due to AFP-driven bias but that plasticity in the 
motor pathway also contributed signifi cantly. Furthermore, 
the amount of AFP bias exhibited on one day was highly 
predictive of the amount of plasticity in the motor pathway 
the next day (Andalman and Fee 2009). This fi nding is con-
sistent with the hypothesis that biased variability from 
LMAN can actively drive plasticity in the motor pathway 
(Kao et al. 2005; Ölveczky et al. 2005; Troyer and Doupe 
2000). Of course, plasticity in the motor pathway could also 
be shaped by a neuromodulator-based reinforcement signal 
transmitted directly to RA (Fiete et al. 2007).

Even if AFP bias did not constitute an instructive signal to 
RA that drives plasticity, LMAN-generated variability could 
serve another interesting function during learning: it could pro-
duce a more effi cient exploration of motor space by generating 
more fl uctuations in directions that produce a better outcome. 
Strategies that use prior information to direct future sampling 
(exploration) are common in numerical optimization and 
search algorithms, such as the conjugate gradient and Newton-
Raphson methods (Shewchuk 1994). In this sense, the AFP 
implements a smarter search strategy with biased variability 
than would be possible with unbiased variability.

How does LMAN variability become biased in response 
to vocal experience? Area X is ideally situated to monitor the 
vocal fl uctuations driven by LMAN and reinforce those that 

Figure 6  Rapid learning (within 1 day) of pitch changes resulting 
from playback of noise bursts during a song syllable. The playback 
of the noise is contingent on the pitch of the syllable: the noise burst 
is played only during syllable renditions whose pitch falls below 
the mean pitch of the syllable. The pitch of the syllable shifts 
upward such that, by the end of the day, few syllables receive 
noise bursts. Image reproduced with permission from Tumer and 
Brainard (2007). 
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lead to a better outcome. Area X receives collaterals of the 
LMAN axons that project to RA (Vates et al. 1997) and thus 
can directly “observe” the variability signal transmitted to 
RA. Area X also receives a strong dopaminergic projection 
from the midbrain (Figure 2) (Gale et al. 2008; Person et al. 
2008), which in mammals has been shown to carry reward in-
formation (Schultz 2002), and receives an efference copy of 
timing signals from HVC (Hessler 1999; Kozhevnikov and Fee 
2007), which could confer temporal specifi city to the learning 
process. It is thus possible that medium spiny neurons in Area 
X could function to correlate the fl uctuations of LMAN activ-
ity, at a particular time in the song, with a dopaminergic reward 
signal. Through its projection to DLM, Area X could then rein-
force the patterns of LMAN activity that lead to a better-than-
expected match to the memorized template. This model is 
speculative, but is consistent with some views of mammalian 
BG function (Graybiel 2008) and presents an interesting frame-
work within which to examine the function of the AFP. 

These experiments raise many questions crucial to a fur-
ther understanding of the role of this BG-forebrain circuit in 
vocal learning: What are the dynamics of the relation between 
vocal “error” and (1) the generation of AFP bias on a fi ner time 
scale than these early experiments have examined and (2) plas-
ticity in the motor pathway? What is the relation between AFP 
bias and changes in spiking patterns in LMAN? Do these 
changes occur during sleep, as some recent experiments sug-
gest (Shank and Margoliash 2009)? Do neuromodulatory 

inputs to Area X, RA, or other song control nuclei carry error- 
or performance-related signals? If so, how and where are these 
signals computed from auditory feedback? The ability to ex-
perimentally manipulate auditory feedback to drive rapid plas-
tic changes in these brain areas introduces an unprecedented 
opportunity to study the detailed circuit mechanisms that un-
derlie motor learning in cortical and basal ganglia circuits. 

Genetic Contributions to Learning in 
Birdsong and Human Speech

Babies, be they human or songbird, learn to communicate 
with sounds as a result of specifi c experience—the language 
environment they are born into in the case of humans, or the 
particular song a tutor sings to the young songbird. But not 
everything can be imitated. What can be learned depends on 
learning capacity and is also subject to a number of con-
straints: the nature of the auditory fi lters that decide what is 
worth imitating; the “instrument” (the larynx in humans and 
the syrinx in birds), whose physical and physiological prop-
erties affect what sounds it can produce; and the interplay 
between breathing and singing. These factors, as well as the 
learning faculty itself, depend on the activity of genes. While 
there has been much progress zooming in on the neural 
mechanisms of song learning in birds, the role of genes has 
only recently come into focus. 

Figure 7  LMAN (lateral magnocellular nucleus of the anterior nidopallium) inactivation reveals a premotor contribution of the anterior 
forebrain pathway to vocal learning. (A) Average pitch of each rendition of a syllable targeted with conditional auditory feedback for 4 hours 
(top panel, grey dots). On the day shown, the disruptive feedback was targeted to syllable renditions with a higher-than-average pitch, causing 
the pitch to move gradually downward. As the pitch decreased, so did the amount of disruptive feedback (bottom panel). After the infusion of 
tetrodotoxin (TTX) into LMAN (red dots), syllable pitch reverted to a higher pitch and feedback power (in decibels, dB) increased. Δp, total 
learned change in pitch; Δb, regression of pitch after infusion. (B) Same as for panel A but for days of vehicle infusion instead of TTX. Black 
dots indicate the mean pitch in the morning, before and after infusion. (C) Histogram of pitch changes from pre- to postdrug infusion shows 
signifi cant pitch change after TTX infusion (top panel) but not vehicle infusion (bottom panel). “Down days” indicates results from days on 
which the pitch was pushed downward, as in (A); “up days” indicates results from days on which the pitch was pushed upward. Note that 
pitch regression during LMAN inactivation is opposite the direction of ongoing learning, suggesting that LMAN makes a direct premotor 
contribution to learned changes in song. Image reproduced with permission from Andalman and Fee (2009). 
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Four avenues of inquiry into the contribution of genes to 
song learning have been pursued. The fi rst approach hypoth-
esizes that brain regions involved in song control and song 
learning are characterized by different transcriptional activity 
than other regions. The second approach is based on differen-
tial gene expression in song control regions as a result of 
singing or listening to song. Screening by a variety of meth-
ods for these differences has indeed turned up a number of 
promising candidate genes that are differentially regulated 
(Li et al. 2007; Lovell et al. 2008; Wada et al. 2004). The third 
line of research in songbirds has explored candidate genes 
from other animal systems, particularly genes involved in 
learning and memory and, more recently, human language. 
The fourth line of investigation involves analysis of behav-
ioral variability in singing or song learning within a species 
for associations with genetic variability. The success of this 
fourth type of study depends on two ingredients: well-defi ned 
behavioral trait differences in the animals under investiga-
tion, and a good coverage of genetic markers; the latter has 
greatly improved with the recently sequenced zebra fi nch ge-
nome (Warren et al. 2010). In another songbird, the great tit 
(Parus major), quantitative genetic approaches have found a 
link between particular variants in a dopamine receptor gene 
(DRD4) and a fi tness-related trait, boldness in exploratory 
behavior (Fidler et al. 2007; Korsten et al. 2010). 

We limit our review to the second line of research and 
highlight studies in songbirds that address the role of one 
candidate gene, FoxP2, which is relevant for human speech 
and language. Findings on other, learning-related or song-
system-specifi c genes are summarized in a comprehensive 
recent review (White 2009). 

FoxP2, a Transcription Factor Relevant 
for Human Speech and Birdsong

The forkhead box (FOX) protein FOXP22 has captured the 
imagination of scientists and laymen alike because it was the 
fi rst gene causally related to a fairly specifi c speech and lan-
guage phenotype, developmental verbal dyspraxia (DVD, 
alternatively called childhood apraxia of speech, CAS; for 
defi nition, see American Speech-Language-Hearing Associ-
ation, www.asha.org) (Lai et al. 2001). DVD’s core symp-
toms are inaccurate and incomplete pronunciation of words, 
diffi culties with repeating multisyllable nonsense words, 
and impaired receptive speech (Simms 2007). In addition, 
FOXP2 belongs to a group of genes for which multiple stud-
ies have found clear evidence for positive selection in the 
human lineage (Enard et al. 2002; Yu et al. 2009). Given that 
language may have uniquely human features, it is tempting 
to speculate that understanding FOXP2 may illuminate how 
speech and language work mechanistically and how they 
evolved. 

2Following nomenclature proposed by Kaestner and colleagues (2000). 
Uppercase (FOXP2) and lowercase (FoxP2) refer to human and nonhuman 
transcription factors, respectively; the terms in italics (FOXP2 and FoxP2) 
refer to the respective genes or RNA transcripts. 

The link between the transcription factor FOXP2 and lan-
guage was fi rst recognized in the large three-generation KE 
family, whose members are disproportionately affected by 
language impairments: about half of the members of this 
family have autosomally dominantly inherited FOXP2 point 
mutations, and similar speech and language phenotypes exist 
in unrelated individuals with other FOXP2 mutations (Lai 
et al. 2001; MacDermot et al. 2005). Since the discovery of 
FOXP2 mutations in the KE family, in vitro and in vivo studies, 
including different animal studies, have made considerable 
progress in addressing the molecular, neural, and evolutionary 
function of FoxP2 in different systems. 

FoxP2 research has followed three main directions. First, 
refi ning the speech phenotype and identifying neural struc-
tural and functional correlates in persons with FOXP2 muta-
tions; second, analyzing evolutionary changes in the FoxP2 
sequence across the animal kingdom and in particular the 
hominid lineage; and third, using animal and cell culture 
models to gain insight into the mechanism of its molecular, 
cellular, and behavioral function. We highlight recent fi nd-
ings in songbirds that relate to the language phenotype in 
humans (for reviews of FoxP2 research in other animal and 
in vitro model systems, sequence evolution, and analysis of 
the human phenotypes, see Fisher and Scharff 2009; Vargha-
Khadem et al. 2005; Vernes and Fisher 2009; White et al. 
2006).

FoxP2 During Brain Development

FoxP2 belongs to the large forkhead box transcription factor 
family of genes that is remarkably conserved across the ani-
mal kingdom and is implicated in many diseases and devel-
opmental processes of many tissues (Hannenhalli and Kaestner 
2009). Consistent with a developmental role of other Fox 
proteins, FoxP2 is expressed in regions of the vertebrate em-
bryo in which inductive signals organize adjacent prolifera-
tion of neural progenitors and subsequent migration (Scharff 
and Haesler 2005), a feature that persists in adult avian but 
not mammalian neurogenic zones (Rochefort et al. 2007). 
Structural and functional brain imaging of humans with 
FOXP2 mutations shows subtle volume differences and 
striking activation differences during language tasks, partic-
ularly in corticocerebellar and corticostriatal circuits. These 
fi ndings are consistent with a role for FOXP2 in early brain 
development and with the possibility that reduced FOXP2 
levels affect later ongoing processing of language, causing 
activity-driven structural changes in established neural cir-
cuits. Indeed, FoxP2 continues to be expressed in adult brain 
circuits of various vertebrates and is thus a candidate for in-
volvement in postdevelopmental circuit function. 

FoxP2 in Postnatal Brain Function

Research in songbirds has determined that FoxP2 plays a 
role in established neural circuits, particularly those relevant 
for auditory-guided vocal motor learning (Haesler et al. 
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2004). In juvenile zebra fi nches, FoxP2 expression levels are 
10-20% higher during the phase of vocal sensorimotor learn-
ing than before or after. Likewise, FoxP2 levels are elevated 
in Area X in a strain of adult canaries that incorporate new 
song elements into their repertoire in late summer and fall, 
the end of the breeding season. Thus, changes in FoxP2 ex-
pression in Area X coincide with those in vocal plasticity 
(Haesler et al. 2004). In addition, in both juvenile and adult 
zebra fi nches, FoxP2 expression levels vary with prior sing-
ing activity (Teramitsu and White 2006; Teramitsu et al. 
2010). Interestingly, levels of FoxP2 protein in the medial, 
but not lateral, geniculate nucleus also change after auditory 
stimulation in mice (Horng et al. 2009), emphasizing that 
neural activity can regulate the expression of FoxP2 in spe-
cifi c subsets of neurons in different species. 

To address a possible causal relationship between FoxP2 
expression and vocal learning, FoxP2 levels were experi-
mentally reduced using lentivirus-mediated RNA interfer-
ence in Area X of juvenile zebra fi nches throughout the 
sensorimotor song learning phase (Figure 8). The FoxP2 
knockdown birds copied tutor songs only partially, imitating 
some elements but omitting others, imitating less accurately, 
and producing song elements more variably during each ren-
dition (Haesler et al. 2007). Zebra fi nches with knocked-
down FoxP2 in Area X remain able to generate a normal 
range of sounds. Interestingly, mice with reduced or absent 
FoxP2 are also able to produce the entire repertoire of ultra-
sonic distress and isolation calls (Gaub et al. 2010). Together, 
these data suggest that the sensorimotor integration neces-
sary for the imitative learning of sounds is more likely to be 
affected by altered FoxP2 levels than the motor production 
itself. This song phenotype of FoxP2 knockdown zebra 
fi nches strikingly echoes the incomplete and inaccurate ren-
ditions of words and highly variable pronunciation in hu-
mans with a mutated FOXP2 gene. FoxP2 levels were not 
manipulated during embryonic development in these experi-
ments, but only when song control brain circuits were al-
ready largely assembled, suggesting that a reduction of 
FoxP2 affects postnatal function independently from effects 
on early nervous system development. 

In Area X, FoxP2 is expressed in spiny neurons that mir-
ror many features of mammalian striatal medium spiny neu-
rons, except that in songbirds they continue to be added 
throughout adult life. Spiny neurons in Area X are inner-
vated by glutamatergic HVC neurons (Farries et al. 2005a), 
which fi re sparsely during singing (Kozhevnikov and Fee 
2007) and in response to auditory stimuli in swamp sparrows 
(Melospiza georgiana; Prather et al. 2008). It has recently 
been shown that, during singing, putative medium spiny 
neurons recorded in juvenile zebra fi nches fi re sparsely, like 
HVC neurons (Goldberg and Fee 2010). The HVC-to-Area 
X projection onto the spiny neurons is modulated presynap-
tically by midbrain dopaminergic input (Ding and Perkel 
2002). Because nigral dopamine acts on many behavioral 
systems, including reward learning, the integration of pallial 
and dopaminergic signals in FoxP2-expressing spiny neu-
rons may be essential for fi ne-tuning song motor output to 

match the tutor song model. This notion is consistent with 
recent neuroanatomical and functional fi ndings in adult male 
zebra fi nches (Gale and Perkel 2010b). Modulation of FoxP2 
expression might up- or downregulate neural plasticity-relevant 
genes that in turn could affect motor learning via structural 
and functional changes of the spiny neurons. Indeed, recent 
data show that spiny neurons in Area X of adult male zebra 
fi nches have signifi cantly fewer spines after undergoing len-
tivirally mediated FoxP2 knockdown (Schulz et al. 2010). 
Altered synaptic plasticity and impaired motor learning in 
mice carrying either the human FOXP2 sequence or muta-
tion are consistent with this interpretation (Enard et al. 2009; 
Groszer et al. 2008). 

These studies illustrate the use of animal models to iden-
tify the organizational level of language at which a particular 
gene is required. A FOXP2 defi cit manifests itself in imperfect 
execution of the orofacial gestures that produce speech sounds 
(Vargha-Khadem et al. 2005); this effect could in principle be 
due to improper cranial motor neuron function, but studies 
instead point to cortical-BG circuits, which are more centrally 
involved in initiating and sequencing vocal gestures. 

No single gene can elucidate whether there is a human-
specifi c genetic toolkit that enables language development. 
In fact, FoxP1, another protein of the FoxP gene family, di-
merizes with FoxP2 (Li et al. 2004) and is strongly expressed 
in many song control nuclei (Haesler et al. 2004; Teramitsu 
et al. 2004), fi ndings that suggest FOXP1 may also play a role 
in human speech. In fact, a recent case report of a child with 
a deletion of FOXP1 and severe speech delay confi rmed this 
prediction (Carr et al. 2010). Likewise, sequence variants in 
the CNTNAP2 gene, which is regulated by FOXP2, were 
shown to also segregate with language abnormalities. (Vernes 
et al. 2008). Interestingly, Cntnap2 in songbirds shows dif-
ferential expression in several song control nuclei, including 
Area X, LMAN, and RA (Panaitof et al. 2010). 

Investigating the role of genes operating at the different 
levels of organ systems and neural circuits underlying lan-
guage learning and production in humans and songbirds will 
advance efforts to understand how vocal communication 
works. Which evolutionary twists and turns led to vocal 
learning in distantly related species? How did the extra in-
gredients necessary for human language become instantiated 
biologically? One approach to the latter question is the com-
parison of genes and their function between nonhuman and 
human primates. In fact, of the approximately 23,000 human 
genes, the 50 to 100 that are unique to humans (Stahl and 
Wainszelbaum 2009) are unlikely to be solely responsible 
for those differences. Attention has therefore turned to or-
thologous genes, including FOXP2, that show signs of posi-
tive selection in the human lineage. 

Geschwind and colleagues recently showed that in hu-
man cell lines, target genes are regulated differently by the 
human version of FOXP2 than by the chimp version, and 
that chimp brains express some of those target genes at dif-
ferent levels than human brains (Konopka et al. 2009). These 
data suggest that quantitative as well as qualitative changes 
in the molecular cascade controlled by transcription factors 
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such as FoxP2 could be a source (but also a byproduct) of 
evolutionary changes leading from the common ancestor to 
chimps in one lineage and humans in another. 

FoxP2 constitutes an example of a gene that both is rel-
evant for human language and can be studied in the songbird 
model system. Other genes relevant for singing in songbirds 
(White 2009) may be relevant for human cognitive function, 
including language, as is true of a rho guanine nucleotide 
exchange factor—its expression in zebra fi nch Area X is 
regulated by singing (Wada et al. 2006) and it is associated 
with mental retardation in humans (Kalscheuer et al. 2009). 

The recent completion of the sequencing of the zebra fi nch 
genome (Warren et al. 2010) and associated studies will 
greatly enhance the power of such comparative approaches. 

Summary 

Studies in the songbird have yielded a wealth of information 
about how complex sequential behaviors are generated and 
learned by neural circuits. Song production involves a small 
set of discrete nuclei whose functions are beginning to be 

Figure 8 Summary of gene knockdown study of the role of the FoxP2 transcription factor in Area X during song learning. (A) Developmental 
time course of songbird vocal learning. Red arrow indicates time at which juvenile male zebra fi nches received bilateral injections into Area 
X with lentivirus carrying a short hairpin RNA (shRNA) interference construct. (B) The extent of the viral infection is made visible through 
virally mediated green fl uorescent protein (GFP) expression, covering part of Area X (bottom left panel). (C) FoxP2 messenger RNA in Area 
X is dynamically regulated during development; Area X expresses more FoxP2 than the surrounding striatum at 35 and 50 posthatch days 
(phd) (arrows), when song learning occurs most rapidly. DT, dorsal thalamus. (D) Spectrograms of a tutor (top) and of an adult pupil (bottom) 
that received knockdown of FoxP2 in Area X as a juvenile. Note incomplete and inaccurate song imitation. (E) Quantifi cation of similarity 
with tutor song of control pupils and pupils with FoxP2 knockdown. Control experiments were carried out with nontargeting shRNA se-
quences (shControl) and shRNA sequences targeting GFP (shGFP). n.s., not signifi cant. Images in (B) and (D) reproduced with permission 
from Haesler et al. (2007). Image in (C) reproduced with permission from Haesler et al. (2004). 
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understood. Nucleus HVC appears to act as a clock or timer 
that generates a precise sequence of bursts of spikes. This 
sequence is subsequently routed or transformed by nucleus 
RA to generate an appropriate pattern of downstream motor 
neuron activation. Vocal learning in the songbird, which in-
volves the programming of the HVC sequence and the down-
stream connections, involves a highly conserved basal 
ganglia–forebrain circuit (Bentivoglio 2003), which shares 
many essential features with mammalian BG circuits—cell 
types, intrinsic connectivity, interaction with thalamic and 
cortical circuitry, dopaminergic innervation, and molecular 
signatures. 

One of the unique features of the LMAN/Area X/DLM 
pathway in songbird BG-forebrain circuitry is that its func-
tion appears to be restricted to song learning and adult song 
plasticity, thus affording unprecedented access to the spe-
cifi c BG circuitry involved in a particular learning behavior. 
Taking advantage of this specifi city, it has been possible to 
develop new tools, including molecular genetic methods, to 
manipulate learning and monitor neural activity in parts of 
the circuit. Using these tools, a number of laboratories are 
working to identify the role of the cortical, basal ganglia, and 
thalamic components of this circuit and to test hypotheses 
about how they act together to enable vocal learning. Under-
standing how this circuit generates, evaluates, and corrects 
motor actions may shed light on motor and cognitive learn-
ing in other species (including humans), as well as elucidate 
the fundamental principles of vertebrate brain function. 
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